In this paper, we carried out the experimental study to investigate the polymer effect on two-oscillating grid turbulence based on Particle Image Velocimetry. We chose five different concentrations (25, 50, 100, 150 and 200ppm) of polymer solution flow and the Newtonian fluid flow for comparison at three different grid oscillating frequencies (5, 7.5 and 10Hz). The results showed that comparison with the Newtonian fluid case, the turbulent kinetic energy is much smaller in polymer solution cases. A natural definition for drag reduction rate was proposed based on turbulent kinetic energy. It showed that the maximum drag reduction reaches around 80% and the drag-reducing effect increases as the concentration increases. Finally, proper orthogonal decomposition (POD) was used to extract coherent structures in grid turbulence.
- Fluids Engineering Division
Experimental Study on the Drag-Reducing Characteristics in Two-Oscillating Grid Turbulence With Polymer Additives
Wang, Y, Cai, W, Wei, T, Li, F, Yao, L, & Zhao, M. "Experimental Study on the Drag-Reducing Characteristics in Two-Oscillating Grid Turbulence With Polymer Additives." Proceedings of the ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1B, Symposia: Fluid Mechanics (Fundamental Issues and Perspectives; Industrial and Environmental Applications); Multiphase Flow and Systems (Multiscale Methods; Noninvasive Measurements; Numerical Methods; Heat Transfer; Performance); Transport Phenomena (Clean Energy; Mixing; Manufacturing and Materials Processing); Turbulent Flows — Issues and Perspectives; Algorithms and Applications for High Performance CFD Computation; Fluid Power; Fluid Dynamics of Wind Energy; Marine Hydrodynamics. Washington, DC, USA. July 10–14, 2016. V01BT14A005. ASME. https://doi.org/10.1115/FEDSM2016-7616
Download citation file: