The SOFC performance and lifetime highly depend on the operation condition, especially the SOFC operation temperature. The temperature fluctuation causes thermal stress in electrodes and electrolyte ceramics. On the other hand, it also needs to maintain a sufficiently high temperature to enable the efficient transport of oxygen ions across the electrolyte. Therefore, it is necessary to design an effective SOFC temperature management system to guarantee safe and efficient operation. In this paper, a two-side temperature control method is proposed to avoid the temperature difference between anode and cathode. Therefore, the SOFC thermal management system includes two control loops. The anode inlet temperature and cathode inlet temperature are controlled by blowers adjusting the recirculated flow rate. In addition, the control performance of the proposed SOFC thermal management system is compared with one-side temperature control systems. The results show that both anode control loop and cathode control loop are essential to get a better control performance. The SOFC would operate with less efficiency with only anode temperature control. On the other hand, the safety problem would occur with only cathode temperature control. The temperature gradient would be more than the upper limit at a part load condition. Therefore, the SOFC thermal management strategy with anode and cathode temperature control loops is feasible for the SOFC-GT system.

This content is only available via PDF.
You do not currently have access to this content.