In chemical processing industries, heating, cooling and other thermal processing of viscous fluids are an integral part of the unit operations. Enhancement of the natural and forced convection heat transfer rates has been the subject of numerous academic and industrial studies. Motionless mixers, also known as static mixers, are often used in continuous mixing, heat transfer, and chemical reactions applications. These mixers have low maintenance and operating costs, low space requirements, and have no moving parts. Heat exchangers equipped with mixing elements are especially well suited for heating or cooling highly viscous fluids. Shell and tube heat exchangers incorporate static mixing elements in the tubes to produce a heat transfer rate significantly higher than that of conventional heat exchangers. The mixing elements continuously create a new interface between the working fluid and tube wall, thereby producing a uniform heat history in the fluid. It is desired to employ motionless mixers in heat transfer applications to provide a high rate of heat transfer from a thermally homogenous fluid with low pressure drop. In the past, laboratory experimentation has been a fundamental part of the design process of a new static mixer for a given application as well as the selection of an existing static mixer. It is possible to use powerful computational fluid dynamics (CFD) tools to study the performance of these mixers without resorting to experimentation. In this paper, which is an extension to the previous work of the authors, the enhancement of performance of shell and tube heat exchangers by inserting motionless mixers (SMX and helical) is studied for creeping, laminar, and low-Re turbulent flows. It is shown that the studied mixers produced similar flow histories for the working fluid considered. Both SMX and helical mixers are able to increase thermal performance of heat exchangers. The SMX mixer manifests a higher performance in temperature blending and in heat transfer enhancement compared to the helical mixer. However, the pressure drop created by SMX elements, and consequently the required energy to maintain the flow in tube, is significantly higher.

This content is only available via PDF.
You do not currently have access to this content.