Mechanical fatigue subject to external and inertia transient loads in the service life of mechanical systems often leads a structural failure due to accumulated damage. Structural durability analysis that predicts the fatigue life of mechanical components subject to dynamic stresses and strains is a compute intensive multidisciplinary simulation process, since it requires an integration of several computer-aided engineering tools and large amount of data communication and computation. Uncertainties in geometric dimensions due to manufacturing tolerances cause the indeterministic nature of fatigue life of the mechanical component. Due to the fact that uncertainty propagation to structural fatigue under transient dynamic loading is not only numerically complicate but also extremely expensive, it is a challenging task to develop structural durability-based design optimization process and reliability analysis to ascertain whether the optimal design is reliable. The objective of this paper is development of an integrated CAD-based computer-aided engineering process to effectively carry out the design optimization for a structural durability, yielding a durable and cost-effectively manufacturable product. In addition, a reliability analysis is executed to assess the reliability for the deterministic optimal design.

This content is only available via PDF.
You do not currently have access to this content.