This paper describes the effects of size on heat conduction in nanofilms, convective heat transfer in micro/nanochannels, and near-field radiation in nanogaps. As the size is reduced, the ratio of the surface area to the volume increases; therefore, the relative importance of the interfacial effects also increases. The physical mechanisms for these size effects have been classified into two classes. When the scale is reduced to the order of micrometers (except for gases), the interfaces only affect the macro parameters and the continuum assumption still holds, but the relative importance of the various forces (inertia force, viscous force, buoyancy, etc.) and effects (interfacial effect, axial heat conduction in the tube wall, etc.) changes, resulting in changes in the heat transfer characteristics from normal conditions. As the size is further reduced to the order of submicrometers or nanometers, the interface affects not only the macro parameters but also the micro parameters (mean free path, relaxation time, etc.) so the continuum assumption breaks down and Newton’s viscosity law and Fourier’s heat conduction law are no longer applicable. Thus, the major characteristic of micro/nanoscale heat transfer is that the interfacial effects dominate the heat transfer.
Skip Nav Destination
ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer
March 3–6, 2012
Atlanta, Georgia, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
978-0-7918-5477-8
PROCEEDINGS PAPER
Micro/Nanoscale Heat Transfer: Interfacial Effects Dominate the Heat Transfer
X. Zhang
Tsinghua University, Beijing, China
Z. Y. Guo
Tsinghua University, Beijing, China
Paper No:
MNHMT2012-75355, pp. 961-970; 10 pages
Published Online:
July 18, 2013
Citation
Zhang, X, & Guo, ZY. "Micro/Nanoscale Heat Transfer: Interfacial Effects Dominate the Heat Transfer." Proceedings of the ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. Atlanta, Georgia, USA. March 3–6, 2012. pp. 961-970. ASME. https://doi.org/10.1115/MNHMT2012-75355
Download citation file:
22
Views
Related Proceedings Papers
Related Articles
Magnetohydrodynamics-Mixed Convection From Radiate Vertical Isothermal Surface Embedded in a Saturated Porous Media
J. Appl. Mech (January,2006)
Influence of Buoyancy and Inter-Surface Radiation on Confined Jet Impingement Cooling of a Semi-Cylindrical Concave Plate
J. Heat Mass Transfer (March,2024)
The Influence of Real Gas Radiation on the Stability and Development of Benard Convection in a Two-Dimensional Layer
J. Heat Transfer (October,2021)
Related Chapters
Radiation
Thermal Management of Microelectronic Equipment
Radiation
Thermal Management of Microelectronic Equipment, Second Edition
What Is a Watt?
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong