The Electrically Trace Heated Blanket (ETH-Blanket) is a new offshore intervention/remediation system currently in development by TechnipFMC for the efficient remediation of plugs due to hydrates or wax in subsea production and injection flowlines. The ETH-Blanket consists of a network of heating cables placed underneath an insulation layer which is laid onto the seabed above the plugged flowline. By applying electrical power to the cables, heat is generated by Joule effect which warms up the flowline content until hydrate dissociation or wax plug remediation through softening or complete melting.

As part of a Joint Industry Project (JIP) between TechnipFMC, Shell and Total, full-scale thermal testing of an ETH-Blanket prototype was carried out in Artelia facilities (in Grenoble, France). This testing was performed to verify the capability of the ETH-Blanket system to increase the temperature of the fluid inside a pipe sample above a target temperature (hydrate dissociation temperature or wax disappearance temperature) for various conditions. The impact of lateral misalignment of the ETH-blanket on the pipe and of the pipe burial depth were studied. Moreover, the tests were carried out on two pipe samples, with different designs and insulation properties. In parallel, CFD models of the test set-up were built to replicate the thermal behaviour of the ETH-Blanket. The combination of these models with the measured heating efficiency of the prototype allowed characterising the performances of the system in real subsea conditions.

This paper presents the description of the full scale thermal testing conditions. Results of the different tests are detailed and the impact of the different parameters on the ETH-Blanket thermal performances are assessed, focusing on natural convection effects, thermal losses and the overall data gathering process.

This content is only available via PDF.
You do not currently have access to this content.