Recent studies on hard and tough biological materials have led to a concept called flaw tolerance which is defined as a state of material in which pre-existing cracks do not propagate even as the material is stretched to failure near its limiting strength. In this process, the material around the crack fails not by crack propagation, but by uniform rupture at the limiting strength. At the failure point, the classical singular stress field is replaced by a uniform stress distribution with no stress concentration near the crack tip. This concept provides an important analogy between the known phenomena and concepts in fracture mechanics, such as notch insensitivity, fracture size effects and large scale yielding or bridging, and new studies on failure mechanisms in nanostructures and biological systems. In this paper, we discuss the essential concept for the model problem of an interior center crack and two symmetric edge cracks in a thin strip under tension. A simple analysis based on the Griffith model and the Dugdale-Barenblatt model is used to show that flaw tolerance is achieved when the dimensionless number Λft=ΓE(S2H) is on the order of 1, where Γ is the fracture energy, E is the Young’s modulus, S is the strength, and H is the characteristic size of the material. The concept of flaw tolerance emphasizes the capability of a material to tolerate cracklike flaws of all sizes.

1.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
, 2003, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
, pp.
5597
5600
.
2.
Gao
,
H.
, and
Ji
,
B.
, 2003, “
Modeling Fracture in Nanomaterials via a Virtual Internal Bond Method
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
1777
1791
.
3.
Gao
,
H.
,
Ji
,
B.
,
Buehler
,
M. J.
, and
Yao
,
H.
, 2004, “
Flaw Tolerant Bulk and Surface Nanostructures of Biological Systems
,”
Mech. Chem. Biosyst.
1546-2048,
1
, pp.
37
52
.
4.
Ji
,
B.
, and
Gao
,
H.
, 2004, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
0022-5096,
52
(
9
), pp.
1963
1990
.
5.
Ji
,
B.
, and
Gao
,
H.
, 2004, “
A Study of Fracture Mechanisms in Biological Nanocomposites via the Virtual Internal Bond Model
,”
Mater. Sci. Eng., A
0921-5093,
366
, pp.
96
103
.
6.
Gao
,
H.
, and
Yao
,
H.
, 2004, “
Shape Insensitive Optimal Adhesion of Nanoscale Fibrillar Structures
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
, pp.
7851
7856
.
7.
Gao
,
H.
,
Wang
,
X.
,
Yao
,
H.
,
Gorb
,
S.
, and
Arzt
,
E.
, 2005, “
Mechanics of Hierarchical Adhesion Structure of Gecko
,”
Mech. Mater.
0167-6636,
37
, pp.
275
285
.
8.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Appl. Mech.
0021-8936,
8
, pp.
100
104
.
9.
Barenblatt
,
G. I.
, 1985, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
VII
,
Academic
, New York, pp.
55
129
.
10.
Rice
,
J. R.
, 1980, “
The Mechanics of Earthquake Rupture
,”
International School of Physics “E. Fermi,” Course 78, 1979
:
Italian Physical Society/North Holland
, Amsterdam.
11.
Bilby
,
B. A.
,
Cottrell
,
A. H.
, and
Swinden
,
K. H.
, 1963, “
The Spread of Plastic Yield from a Notch
,”
Proc. R. Soc. London, Ser. A
1364-5021,
272
, pp.
304
314
.
12.
Suo
,
Z.
,
Ho
,
S.
, and
Gong
,
X.
, 1993, “
Notch Ductile-to-Brittle Transition due to Localized Inelastic Band
,”
J. Eng. Mater. Technol.
0094-4289,
115
(
3
), pp.
319
326
.
13.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
, 1976, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
0008-8846,
6
, pp.
773
782
.
14.
Bazant
,
Z. P.
, 1976, “
Instability, Ductility and Size Effect in Strain-Softening Concrete
,”
J. Eng. Mech.
0733-9399,
102
, pp.
331
344
.
15.
Bazant
,
Z. P.
, and
Cedolin
,
L.
, 1983, “
Finite Element Modeling of Crack Band Propagation
,”
J. Struct. Eng.
0733-9445,
109
, pp.
69
92
.
16.
Bazant
,
Z. P.
, and
Planas
,
J.
, 1998,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
, Boca Raton, FL.
17.
Carpinteri
,
A.
, 1997,
Structural Mechanics: A Unified Approach
,
Chapman and Hall
, London.
18.
Mulmule
,
S. V.
, and
Dempsey
,
J. P.
, 2000, “
LEFM Size Requirement for the Fracture Testing of Sea Ice
,”
Int. J. Fract.
0376-9429,
102
, pp.
85
98
.
19.
Bao
,
G.
, and
Suo
,
Z.
, 1992, “
Remarks on Crack-Bridging Concepts
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
355
366
.
20.
Cox
,
B. N.
, and
Marshall
,
D. B.
, 1994, “
Concepts for Bridged Cracks in Fracture and Fatigue
,”
Acta Metall. Mater.
0956-7151,
42
, pp.
341
363
.
21.
Massabo
,
R.
, and
Cox
,
B. N.
, 1999, “
Concepts for Bridged Mode II Delamination Cracks
,”
J. Mech. Phys. Solids
0022-5096,
47
, pp.
1265
1300
.
22.
Kendall
,
K.
, 1978, “
Complexities of Compression Failure
,”
Proc. R. Soc. London, Ser. A
1364-5021,
361
, pp.
245
263
.
23.
Karihaloo
,
B. L.
, 1979, “
A Note on Complexities of Compression Failure
,”
Proc. R. Soc. London, Ser. A
1364-5021,
368
, pp.
483
493
.
24.
Drugan
,
W. J.
, 2001, “
Dynamic Fragmentation of Brittle Materials: Analytical Mechanics-Based Models
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1181
1208
.
25.
Lemaitre
,
J.
, 1998,
A Course on Damage Mechanics
, 2nd ed.,
Springer Verlag
, Berlin.
26.
Tada
,
J.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1973,
The Stress Analysis of Cracks Handbook
, 2nd ed., 1985,
Del Research Corporation
, St. Louis.
27.
Maugis
,
D.
, 1992, “
Adhesion of Spheres: JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
0021-9797,
150
, pp.
243
269
.
28.
Pugno
,
N. M.
, and
Ruoff
,
R. S.
, 2004, “
Quantized Fracture Mechanics
,”
Philos. Mag.
1478-6435,
84
, pp.
2829
2845
.
29.
Weiner
,
S.
, and
Wagner
,
H. D.
, 1998, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
0084-6600,
28
, pp.
271
298
.
30.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
411
425
.
31.
Timosheko
,
S. P.
, and
Goodier
,
J. N.
, 1987,
Theory of Elasticity
,
McGraw-Hill
, New York.
You do not currently have access to this content.