Based on the surface elasticity theory and using a local asymptotic approach, we analyzed the influences of surface energy on the stress distributions near a blunt crack tip. The dependence relationship of the crack-tip stresses on surface elastic parameters is obtained for both mode-I and mode-III cracks. It is found that when the curvature radius of a crack front decreases to nanometers, surface energy significantly affects the stress intensities near the crack tip. Using a kind of surface elements, we also performed finite element simulations to examine the surface effects on the near-tip stresses. The obtained analytical solution agrees well with the numerical results.

1.
Buehler
,
M. J.
, and
Gao
,
H. J.
, 2006, “
Dynamical Fracture Instabilities Due to Local Hyperelasticity at Crack Tips
,”
Nature (London)
0028-0836,
439
, pp.
307
310
.
2.
Buehler
,
M. J.
,
Abraham
,
F. F.
, and
Gao
,
H. J.
, 2003, “
Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale
,”
Nature (London)
0028-0836,
426
, pp.
141
146
.
3.
Buehler
,
M. J.
,
Gao
,
H. J.
, and
Huang
,
Y. G.
, 2004, “
Continuum and Atomistic Studies of the Near-Crack Field of a Rapidly Propagating Crack in a Harmonic Lattice
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
, pp.
21
42
.
4.
Abraham
,
F. F.
,
Broughton
,
J. Q.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1998, “
Spanning the Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle Fracture
,”
Europhys. Lett.
0295-5075,
44
, pp.
783
787
.
5.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
, pp.
139
147
.
6.
Shenoy
,
V. B.
, 2002, “
Size-Dependent Rigidities of Nanosized Torsional Elements
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
4039
4052
.
7.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
, 2003, “
Effect of Surfaces on the Size-Dependent Elastic State of Nanoinhomogeneities
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
535
537
.
8.
Cammarata
,
R. C.
,
Sieradzki
,
K.
, and
Spaepen
,
F.
, 2000, “
Simple Model for Interface Stresses With Application to Misfit Dislocation Generation in Epitaxial Thin Films
,”
J. Appl. Phys.
0021-8979,
87
, pp.
1227
1234
.
9.
Dingreville
,
R.
,
Qu
,
J. M.
, and
Cherkaoui
,
M.
, 2005, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1827
1854
.
10.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
, pp.
291
323
.
11.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larche
,
F.
, 1998, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
0141-8610,
78
, pp.
1093
1109
.
12.
Yang
,
F. Q.
, 2004, “
Size-Dependent Effective Modulus of Elastic Composite Materials: Spherical Nanocavities at Dilute Concentrations
,”
J. Appl. Phys.
0021-8979,
95
, pp.
3516
3520
.
13.
Gao
,
W.
,
Yu
,
S. W.
, and
Huang
,
G. Y.
, 2006, “
Finite Element Characterization of the Size-Dependent Mechanical Behaviour in Nanosystems
,”
Nanotechnology
0957-4484,
17
, pp.
1118
1122
.
14.
Sharma
,
P.
, and
Ganti
,
S.
, 2004, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,” ASME,
ASME J. Appl. Mech.
0021-8936,
71
, pp.
663
670
.
15.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1574
1596
.
16.
Wu
,
C. H.
, 1999, “
The Effect of Surface Stress on the Configurational Equilibrium of Voids and Cracks
,”
J. Mech. Phys. Solids
0022-5096,
47
, pp.
2469
2492
.
17.
Horgland
,
R. G.
,
Daw
,
M. S.
, and
Hirth
,
J. P.
, 1991, “
Some Aspects of Forces and Fields in Atomic Models of Crack Tips
,”
J. Mater. Res.
0884-2914,
6
, pp.
2565
2571
.
18.
Creager
,
M.
, and
Paris
,
P. C.
, 1967, “
Elastic Field Equations for Blunt Cracks With Reference to Stress Corrosion Cracking
,”
Int. J. Fract. Mech.
0020-7268,
3
, pp.
247
252
.
19.
Smith
,
E.
, 2004, “
A Comparison of Mode I and Mode III Results for the Elastic Stress Distribution in the Immediate Vicinity of a Blunt Notch
,”
Int. J. Eng. Sci.
0020-7225,
42
, pp.
473
481
.
20.
England
,
A. E.
, 1971,
Complex Variable Methods in Elasticity
,
Wiley
,
New York
.
You do not currently have access to this content.