We postulate that an equivalent continuum structure (ECS) of a single-walled carbon nanotube (SWCNT) is a hollow cylinder with mean radius and length equal to that of the SWCNT, and find the thickness of the ECS so that its mechanical response in free vibrations is the same as that of the SWCNT. That is, for mechanical deformations, the ECS is energetically equivalent to the SWCNT. We use MM3 potential to study axial, torsional, radial breathing and bending vibrations of several traction free–traction free SWCNTs of different helicities and diameters and compare them with the corresponding vibrational modes and frequencies of traction free–traction free ECSs obtained by using the three-dimensional linear elasticity theory and the finite element analysis (3D-FEA). The consideration of free ends eliminates the effects of boundary conditions and avoids resolving equivalence between boundary conditions in the analyses of SWCNTs and their ECSs. It is found that the wall thickness of the ECS (and hence of a SWCNT) is 1Å and Young’s modulus of the material of the ECS (and hence of the SWCNT) is 3.3TPa. Both quantities are independent of the helicity and the diameter of the SWCNT. We also study radial breathing mode (RBM) vibrations with the molecular dynamics and the 3D-FEA simulations, and compare them with experimental findings. Accuracy in the assignment of spectral lines for RBMs in the Raman spectroscopy is discussed.

1.
Ijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
3.
Zhou
,
X.
,
Zhou
,
J.
, and
Ou-Yang
,
Z.
, 2000, “
Strain Energy and Young’s Modulus of Single-Walled Carbon Nanotubes Calculated From Electronic Energy-Band Theory
,”
Phys. Rev. B
0163-1829,
62
, pp.
13692
13696
.
4.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
, 2001, “
C2F, BN, and C Nanoshell Elasticity From Ab Initio Computations
,”
Phys. Rev. B
0163-1829,
64
, p.
235406
.
5.
Tu
,
Z. C.
, and
Ou-Yang
,
Z.
, 2002, “
Single-Walled and Multiwalled Carbon Nanotubes Viewed as Elastic Tubes With the Effective Young’s Moduli Dependent on Layer Number
,”
Phys. Rev. B
0163-1829,
65
, p.
233407
.
6.
Reich
,
S.
,
Thomsen
,
C.
, and
Ordejon
,
P.
, 2002, “
Elastic Properties of Carbon Nanotubes Under Hydrostatic Pressure
,”
Phys. Rev. B
0163-1829,
65
, p.
153407
.
7.
Vodenitcharova
,
T.
, and
Zhang
,
L. C.
, 2003, “
Effective Wall Thickness of a Single-Walled Carbon Nanotube
,”
Phys. Rev. B
0163-1829,
68
, p.
165401
.
8.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
789
821
.
9.
Wang
,
L.
,
Zheng
,
Q.
,
Liu
,
J. Z.
, and
Jiang
,
Q.
, 2005, “
Size Dependence of the Thin-Shell Model for Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
105501
.
10.
Chen
,
X.
, and
Cao
,
G.
, 2006, “
A Structural Mechanics Study of Single-Walled Carbon Nanotubes Generalized From Atomistic Simulation
,”
Nanotechnology
0957-4484,
17
, pp.
1004
1015
.
11.
Wu
,
Y.
,
Xhang
,
X.
,
Leung
,
A. Y. T.
, and
Zhong
,
W.
, 2006, “
An Energy-Equivalent Model on Studying the Mechanical Properties of Single-Walled Carbon Nanotubes
,”
Thin-Walled Struct.
0263-8231,
44
, pp.
667
676
.
12.
Kalamkarov
,
A. L.
,
Georgiades
,
A. V.
,
Rokkam
,
S. K.
,
Veedu
,
V. P.
, and
Ghasemi-Nejhad
,
M. N.
, 2006, “
Analytical and Numerical Techniques to Predict Carbon Nanotubes Properties
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
6832
6854
.
13.
Halicioglu
,
T.
, 1998, “
Stress Calculations for Carbon Nanotubes
,”
Thin Solid Films
0040-6090,
312
, pp.
11
14
.
14.
Yu
,
M.-F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Rodney
,
S. R.
, 2000, “
Strength and Breaking Mechanisms of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
, pp.
637
640
.
15.
Ray
,
M. C.
, and
Batra
,
R. C.
, 2007, “
A Single-Walled Carbon Nanotube Reinforced 1-3 Piezoelectric Composite for Active Control of Smart Structures
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
1936
1947
.
16.
Rao
,
A. M.
,
Richter
,
E.
,
Bandow
,
S.
,
Chase
,
B.
,
Eklund
,
P. C.
,
Williams
,
K. A.
,
Fang
,
S.
,
Subbaswamy
,
K. R.
,
Menon
,
M.
,
Thess
,
A.
,
Smalley
,
R. E.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1997, “
Diameter-Selective Raman Scattering From Vibrational Modes in Carbon Nanotubes
,”
Science
0036-8075,
275
, pp.
187
191
.
17.
Lawler
,
H. M.
,
Areshkin
,
D.
,
Mintmire
,
J. W.
, and
White
,
C. T.
, 2005, “
Radial-Breathing Mode Frequencies for Single-Walled Carbon Nanotubes of Arbitrary Chirality: First-Principle Calculations
,”
Phys. Rev. B
0163-1829,
72
, p.
233403
.
18.
Kurti
,
J.
,
Kresse
,
G.
, and
Kuzmany
,
H.
, 1998, “
First-Principles Calculations of the Radial Breathing Mode of Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
58
, pp.
R8869
8872
.
19.
Kuzmany
,
H.
,
Burger
,
B.
,
Hulman
,
M.
,
Kurti
,
J.
,
Rinzler
,
A. G.
, and
Smalley
,
R. E.
, 1998, “
Spectroscopic Analysis of Different Types of Single-Wall Carbon Nanotubes
,”
Europhys. Lett.
0295-5075,
44
, pp.
518
524
.
20.
Allinger
,
N. L.
,
Yuh
,
Y. H.
, and
Lii
,
J. H.
, 1998, “
Molecular Mechanics. The MM3 Force Field for Hydrocarbons
,”
J. Am. Chem. Soc.
0002-7863,
111
, pp.
8551
8566
.
21.
Ponder
,
J. W.
, 2004, User’s Guide TINKER Molecular Modelling Package 4.2.
22.
Sears
,
A.
, and
Batra
,
R. C.
, 2004, “
Macroscopic Properties of Carbon Nanotubes From Molecular-Mechanics Simulations
,”
Phys. Rev. B
0163-1829,
69
, pp.
235406
.
23.
Blevins
,
R. D.
, 1979,
Formulas For Natural Frequencies and Mode Shapes
,
Van Nostrand Reinhold
,
New York
.
24.
User’s Manual Finite Element Computer Code ABAQUS 6.6.
25.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s Modulus of Single-Walled Nanotubes
,”
Phys. Rev. B
0163-1829,
58
, pp.
14013
14019
.
26.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
, 2006, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
74
, pp.
245413
.
27.
Wu
,
J.
,
Hwang
,
K. C.
, and
Huang
,
Y.
, 2008, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
, pp.
279
292
. 0022-5096
28.
Peng
,
J.
,
Wu
,
J.
,
Hwang
,
K. C.
,
Song
,
J.
, and
Huang
,
Y.
, 2008, “
Can a Single-Wall Carbon Nanotube be Modelled as a Thin Shell?
,”
J. Mech. Phys. Solids
0022-5096, to be published.
29.
Batra
,
R. C.
, and
Sears
,
A.
, 2007, “
Uniform Radial Expansion/Contraction of Carbon Nanotubes and Their Transverse Elastic Moduli
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
, pp.
835
844
.
30.
Wang
,
C. Y.
, and
Zhang
,
L. C.
, 2008, “
A Critical Assessment of the Elastic Properties and Effective Wall Thickness of Single-Walled Carbon Nanotubes
,”
Nanotechnology
0957-4484,
19
, p.
075705
.
31.
Sears
,
A.
, and
Batra
,
R. C.
, 2006, “
Buckling of Multi-Walled Carbon Nanotubes Under Axial Compression
,”
Phys. Rev. B
0163-1829,
73
, p.
085410
.
You do not currently have access to this content.