In this work, we propose a strength theory as a function of temperature and state of stresses for metals. Based on the fracture in the hydrostatic stress, we derived a generalized strength model, in which the fracture strength decreases almost linearly with the increasing of the temperature. Furthermore this generalized strength model was extended to the general state of stresses by replacing the equivalent hydrostatic stresses with the temperature effect based on the general thermodynamics principles. Molecular dynamics (MD) simulation was also conducted to simulate the fracture evolution at high temperature and to explain the mechanism of temperature-dependent strength at atomic scale. The proposed model was also verified by experiment of Mo-10Cu alloy at elevated temperature.

References

1.
Jiang
,
H.
,
Hirohasi
,
M.
,
Lu
,
Y.
, and
Imanari
,
H.
,
2002
, “
Effect of Nb on the High Temperature Oxidation of Ti–(0–50 at. %)Al
,”
Scr. Mater.
,
46
(9), pp.
639
643
.10.1016/S1359-6462(02)00042-8
2.
Ma
,
C. L.
,
Li
,
J. G.
,
Tan
,
Y.
,
Tanaka
,
R.
, and
Hanada
,
S.
,
2004
, “
Microstructure and Mechanical Properties of Nb/Nb5Si3 In-Situ Composites in Nb-Mo-Si and Nb-W-Si System
,”
Mater. Sci. Eng. A
,
386
(1–2), pp.
375
383
.10.1016/j.msea.2004.08.004
3.
Senkov
,
O. N.
,
Scott
,
J. M.
,
Senkova
,
S. V.
,
Miracle
,
D. B.
, and
Woodward
,
C. F.
,
2011
, “
Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy
,”
J. Alloys Compd.
,
509
(20), pp.
6043
6048
.10.1016/j.jallcom.2011.02.171
4.
Liu
,
C. M.
,
Wang
,
H. M.
,
Zhang
,
S. Q.
,
Tang
,
H. B.
, and
Zhang
,
A. L.
,
2014
, “
Microstructure and Oxidation Behavior of New Refractory High Entropy Alloys
,”
J. Alloys Compd.
,
583
, pp.
162
169
.10.1016/j.jallcom.2013.08.102
5.
Varma
,
S. K.
,
2010
, “
Refractory Metals—An Exploration of High-Temperature Materials
,”
JOM
,
62
(10), pp.
12
.10.1007/s11837-010-0147-y
6.
Yoshimi
,
K.
,
Nakatani
,
S.
,
Nomura
,
N.
, and
Hanada
,
S.
,
2003
, “
Thermal Expansion, Strength and Oxidation Resistance of Mo/Mo5SiB2 In-Situ Composites at Elevated Temperature
,”
Intermetallics
,
11
(8), pp.
787
794
.10.1016/S0966-9795(03)00073-6
7.
Yoko
,
Y.-M.
,
2000
, “
High Temperature Strength of IR-Based Refractory Superalloys
,”
J. Jpn. Inst. Met.
,
64
, pp.
1068
1075
.10.1557/PROC-646-N3.6.1
8.
Armstrong
,
R. W.
, and
Walley
,
S. M.
,
2008
, “
High Strain Rate Properties of Metals and Alloys
,”
Inter. Mater. Rev.
,
53
(3), pp.
105
128
.10.1179/174328008X277795
9.
Carreker
,
R. P.
, and
Hibbard
,
W. R.
,
1953
, “
Tensile Deformation of High-Purity Copper as a Function of Temperature, Strain Rate, and Grain Size
,”
Acta Metall.
,
1
(6), pp.
654
–663.10.1016/0001-6160(53)90022-4
10.
Su
,
H. H.
,
Fang
,
X. F.
,
Feng
,
X.
, and
Yan
,
B.
,
2014
, “
Temperature-Dependent Modulus of Metals Based on Lattice Vibration Theory
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041017
.10.1115/1.4025417
11.
Hu
,
S. L.
, and
Shen
,
S. P.
,
2013
, “
Non-Equilibrium Thermodynamics and Variational Principles for Fully Coupled Thermal–Mechanical–Chemical Processes
,”
Acta Mech.
,
224
(12), pp.
2895
2910
.10.1007/s00707-013-0907-1
12.
Suo
,
Y. H.
, and
Shen
,
S. P.
,
2013
, “
General Approach on Chemistry and Stress Coupling Effects During Oxidation
,”
J. Appl. Phys.
,
114
(16), p.
164905
.10.1063/1.4826530
13.
Wei
,
Y. J.
, and
Gao
,
H. J.
,
2008
, “
An Elastic–Viscoplastic Model of Deformation in Nanocrystalline Metals Based on Coupled Mechanisms in Grain Boundaries and Grain Interiors
,”
Mater. Sci. Eng. A
,
478
(1–2), pp.
16
25
.10.1016/j.msea.2007.05.054
14.
Wei
,
Y. J.
,
2011
, “
Anisotropic Size Effect in Strength in Coherent Nanowires With Tilted Twins
,”
Phys. Rev. B
,
84
(1), p.
014107
.10.1103/PhysRevB.84.014107
15.
Wei
,
Y. J.
,
2011
, “
Scaling of Maximum Strength With Grain Size in Nanotwinned fcc Metals
,”
Phys. Rev. B
,
83
(13), p.
132104
.10.1103/PhysRevB.83.132104
16.
Vikas
,
T.
, and
Min
,
Z.
,
2006
, “
Tension-Compression Strength Asymmetry of Nanocrystalline α-Fe2O3 + fcc-Al Ceramic-Metal Composites
,”
Appl. Phys. Lett.
,
88
, p.
233107
.10.1063/1.2210797
17.
Vikas
,
T.
, and
Min
,
Z.
,
2006
, “
Classical Molecular-Dynamics Potential for the Mechanical Strength of Nanocrystalline Composite fcc-Al + α- Fe2O3
,”
Phys. Rev. B
,
73
(17), p.
174116
.10.1103/PhysRevB.73.174116
18.
Qiang
,
Y.
,
Bažant
,
Z. P.
,
Bayldon
,
J.
,
Le
,
J.-L.
,
Caner
,
F. C.
,
Ng
,
W. H.
,
Waas
,
A. M.
, and
Daniel
,
I. M.
,
2009
, “
Scaling of Strength of Metal-Composite Joints—Part I: Experimental Investigation
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011011
.10.1115/1.3172254
19.
Le
,
J.-L.
,
Bažant
,
Z. P.
, and
Yu
,
Q.
,
2009
, “
Scaling of Strength of Metal-Composite Joints—Part II: Interface Fracture Analysis
,”
ASME J. Appl. Mech.
,
77
(1), p.
011012
.10.1115/1.3172152
20.
Yu
,
Q.
,
Bažant
,
Z. P.
, and
Le
,
J.-L.
,
2013
, “
Scaling of Strength of Metal-Composite Joints—Part III: Numerical Simulation
,”
ASME J. Appl. Mech.
,
80
(
5
), p.
054503
.10.1115/1.4023643
21.
Zhurkov
,
S. N.
,
1984
, “
Kinetic Concept of the Strength of Solids
,”
Int. J. Fract.
,
26
(4), pp.
295
307
.10.1007/BF00962961
22.
Vettegren
,
V. I.
,
Kulik
,
V. B.
, and
Bronnikov
,
S. V.
,
2005
, “
Temperature Dependence of the Tensile Strength of Polymers and Metals at Elevated Temperatures
,”
Tech. Phys. Lett.
,
31
(11), pp.
969
972
.10.1134/1.2136968
23.
Selinger
,
R. L. B.
,
Wang
,
Z. G.
,
Gelbart
,
W. M.
, and
Ben-Shaul
,
A.
,
1991
, “
Statistical-Thermodynamic Approach to Fracture
,”
Phys. Rev. A
,
43
(8), pp.
4396
4400
.10.1103/PhysRevA.43.4396
24.
Yamamoto
,
S.
, and
Anderson
,
O. L.
,
1987
, “
Elasticity and Anharmonicity of Potassium Chloride at High Temperature
,”
Phys. Chem. Miner.
,
14
(4), pp.
332
340
.10.1007/BF00309806
25.
Born
,
M.
, and
Huang
,
K.
,
1954
,
Dynamical Theory of Crystal Lattices
,
Clarendon
,
Oxford, UK
.
26.
Liu
,
B.
,
Bai
,
P. K.
,
Chen
,
J.
, and
Bu
,
Z. X.
,
2009
, “
Study on Rapid Prototyping Preparation Process of Molybdenum/Copper Composites
,”
J. North Univ. China, Nat. Sci. Ed.
,
30
, pp.
85
89
, available at: http://caod.oriprobe.com/articles/15280954/Study_on_Rapid_Prototyping_Preparation_Process_of_Molybdenum_Copper_Co.htm
27.
Zhou
,
X. W.
,
Johnson
,
R. A.
, and
Wadley
,
H. N. G.
,
2004
, “
Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers
,”
Phys. Rev. B
,
69
(14), p.
144113
.10.1103/PhysRevB.69.144113
You do not currently have access to this content.