Due to the oscillatory singular stress field around a crack tip, interface fracture has some peculiar features. This paper is focused on two of them. One can be reflected by a proposed paradox that geometrically similar structures with interface cracks under similar loadings may have different failure behaviors. The other one is that the existing fracture parameters of the oscillatory singular stress field, such as a complex stress intensity factor, exhibit some nonobjectivity because their phase angle depends on an arbitrarily chosen length. In this paper, two objective and independent fracture parameters are proposed which can fully characterize the stress field near the crack tip. One parameter represents the stress intensity with classical unit of stress intensity factors. It is interesting to find that the loading mode can be characterized by a length as the other parameter, which can properly reflect the phase of the stress oscillation with respect to the distance to the crack tip. This is quite different from other crack tip fields in which the loading mode is usually expressed by a phase angle. The corresponding failure criterion for interface cracks does not include any arbitrarily chosen quantity and, therefore, is convenient for comparing and accumulating experimental results, even existing ones. The non-self-similarity of the stress field near an interface crack tip is also interpreted, which is the major reason leading to many differences between the interfacial fracture and the fracture in homogenous materials.

References

1.
Xie
,
J. W.
, and
Waas
,
A. M.
,
2015
, “
Predictions of Delamination Growth for Quasi-Static Loading of Composite Laminates
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081004
.
2.
Huang
,
Y.
,
Yuan
,
J. H.
,
Zhang
,
Y. C.
, and
Feng
,
X.
,
2016
, “
Interfacial Delamination of Inorganic Films on Viscoelastic Substrates
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101005
.
3.
Williams
,
M. L.
,
1959
, “
The Stresses Around a Fault or Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
,
49
(
2
), pp.
199
204
.
4.
Erdogan
,
F.
,
1963
, “
Stress Distribution in a Nonhomogeneous Elastic Plane With Cracks
,”
ASME J. Appl. Mech.
,
30
(
2
), pp.
232
236
.
5.
Erdogan
,
F.
,
1965
, “
Stress Distribution in Bonded Dissimilar Materials With Cracks
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
403
410
.
6.
Sih
,
G. C.
, and
Rice
,
J. R.
,
1964
, “
The Bending of Plates of Dissimilar Materials With Cracks
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
477
482
.
7.
Rice
,
J. R.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
418
423
.
8.
England
,
A. H.
,
1965
, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
400
402
.
9.
Suo
,
Z.
,
1989
, “
Singularities Interacting With Interfaces and Cracks
,”
Int. J. Solids Struct.
,
25
(
10
), pp.
1133
1142
.
10.
Rice
,
J. R.
,
Suo
,
Z.
, and
Wang
,
J.-S.
,
1990
, “
Mechanics and Thermodynamics of Brittle Interfacial Failure in Bimaterial System
,”
Metal-Ceramics Interfaces
,
M.
Rühle
,
A. G.
Evans
,
M. F.
Ashby
, and
J. P.
Hirth
, eds.,
Pergamon Press
,
New York
, pp.
269
294
.
11.
Comninou
,
M.
,
1977
, “
The Interface Crack
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
631
636
.
12.
Comninou
,
M.
,
1978
, “
The Interface Crack in a Shear Field
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
287
290
.
13.
Comninou
,
M.
, and
Schmueser
,
D.
,
1979
, “
The Interface Crack in a Combined Tension-Compression and Shear Field
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
345
348
.
14.
Atkinson
,
C.
,
1977
, “
On Stress Singularities and Interfaces in Linear Elastic Fracture Mechanics
,”
Int. J. Fract.
,
13
(
6
), pp.
807
820
.
15.
Knowles
,
J. K.
, and
Sternberg
,
E.
,
1983
, “
Large Deformations Near a Tip of an Interface-Crack Between Two Neo-Hookean Sheets
,”
J. Elasticity
,
13
(
3
), pp.
257
293
.
16.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.
17.
Comninou
,
M.
,
1990
, “
An Overview of Interface Cracks
,”
Eng. Fract. Mech.
,
37
(
1
), pp.
197
208
.
18.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
19.
Agrawal
,
A.
, and
Karlsson
,
A. M.
,
2007
, “
On the Reference Length and Mode Mixity for a Bimaterial Interface
,”
J. Eng. Mater. Technol.
,
129
(
4
), pp.
580
587
.
20.
Ikeda
,
T.
,
Miyazaki
,
N.
, and
Soda
,
T.
,
1998
, “
Mixed Mode Fracture Criterion of Interface Crack Between Dissimilar Materials
,”
Eng. Fract. Mech.
,
59
(
6
), pp.
725
735
.
21.
Yuuki
,
R.
,
Liu
,
J. Q.
,
Xu
,
J. Q.
,
Ohira
,
T.
, and
Ono
,
T.
,
1994
, “
Mixed Mode Fracture Criteria for an Interface Crack
,”
Eng. Fract. Mech.
,
47
(
3
), pp.
367
377
.
22.
Ji
,
X.
,
2016
, “
SIF-Based Fracture Criterion for Interface Cracks
,”
Acta Mech. Sin.
,
32
(
3
), pp.
491
496
.
23.
Wang
,
J.-S.
, and
Suo
,
Z.
,
1990
, “
Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut-Sandwiches
,”
Acta Metall. Mater.
,
38
(
7
), pp.
1279
1290
.
24.
Banks-Sills
,
L.
,
2015
, “
Interface Fracture Mechanics: Theory and Experiment
,”
Int. J. Fract.
,
191
(
1–2
), pp.
131
146
.
25.
Liechti
,
K. M.
, and
Chai
,
Y. S.
,
1992
, “
Asymmetric Shielding in Interfacial Fracture Under in-Plane Shear
,”
ASME J. Appl. Mech.
,
59
(
2
), pp.
295
304
.
26.
Swadener
,
J. G.
, and
Liechti
,
K. M.
,
1998
, “
Asymmetric Shielding Mechanisms in the Mixed-Mode Fracture of a Glass/Epoxy Interface
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
25
29
.
27.
Banks-Sills
,
L.
, and
Ashkenazi
,
D.
,
2000
, “
A Note on Fracture Criteria for Interface Fracture
,”
Int. J. Fract.
,
103
(
2
), pp.
177
188
.
28.
Reedy
,
E. D.
, and
Emery
,
J. M.
,
2014
, “
A Simple Cohesive Zone Model That Generates a Mode-Mixity Dependent Toughness
,”
Int. J. Solids Struct.
,
51
(
21
), pp.
3727
3734
.
29.
O'Dowd
,
N. P.
,
Shih
,
C. F.
, and
Stout
,
M. G.
,
1992
, “
Test Geometries for Measuring Interfacial Fracture Toughness
,”
Int. J. Solids Struct.
,
29
(
5
), pp.
571
589
.
30.
Becker
,
T.
,
McNaney
,
J.
,
Cannon
,
R.
, and
Ritchie
,
R.
,
1997
, “
Limitations on the Use of the Mixed-Mode Delaminating Beam Test Specimen: Effects of the Size of the Region of K-Dominance
,”
Mech. Mater.
,
25
(
4
), pp.
291
308
.
31.
Chen
,
F. H. K.
, and
Shield
,
R. T.
,
1977
, “
Conservation Laws in Elasticity of the J-Integral Type
,”
Z. Angew. Math. Phys.
,
28
(
1
), pp.
1
22
.
32.
Yau
,
J. F.
,
Wang
,
S. S.
, and
Corten
,
H. T.
,
1980
, “
A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
335
341
.
33.
Yau
,
J. F.
, and
Wang
,
S. S.
,
1984
, “
An Analysis of Interface Cracks Between Dissimilar Isotropic Materials Using Conservation Integrals in Elasticity
,”
Eng. Fract. Mech.
,
20
(
3
), pp.
423
432
.
34.
Bank-Sills
,
L.
,
Travitzky
,
N.
,
Ashkenazi
,
D.
, and
Eliasi
,
R.
,
1999
, “
A Methodology for Measuring Interface Fracture Properties of Composite Materials
,”
Int. J. Fract.
,
99
(
3
), pp.
143
161
.
35.
Wu
,
L. Z.
,
Yu
,
H. J.
,
Guo
,
L. C.
,
He
,
Q. L.
, and
Du
,
S. Y.
,
2011
, “
Investigation of Stress Intensity Factors for an Interface Crack in Multi-Interface Materials Using an Interaction Integral Method
,”
ASME J. Appl. Mech.
,
78
(
6
), p.
061007
.
36.
Chen
,
S. H.
,
Wang
,
T. C.
, and
Kao-Walter
,
S.
,
2003
, “
A Crack Perpendicular to the Bimaterial Interface in Finite Solid
,”
Int. J. Solids Struct.
,
40
(
11
), pp.
2731
2755
.
37.
Chen
,
S. H.
,
Wang
,
T. C.
, and
Kao-Walter
,
S.
,
2005
, “
Finite Boundary Effects in Problem of a Crack Perpendicular to and Terminating at a Bimaterial Interface
,”
Acta Mech. Sin.
,
21
(
1
), pp.
56
64
.
You do not currently have access to this content.