This paper presents results related to the stability of gyroscopic systems in the presence of circulatory forces. It is shown that when the potential, gyroscopic, and circulatory matrices commute, the system is unstable. This central result is shown to be a generalization of that obtained by Lakhadanov, which was restricted to potential systems all of whose frequencies of vibration are identical. The generalization is useful in stability analysis of large scale multidegree-of-freedom real life systems, which rarely have all their frequencies identical, thereby expanding the compass of applicability of stability results for such systems. Comparisons with results in the literature on the stability of such systems are made, and the weakness of results that deal with only general statements about stability is exposed. It is shown that the commutation conditions given herein provide definitive stability results in situations where the well-known Bottema–Karapetyan–Lakhadanov result is inapplicable.

References

1.
Arrowsmith
,
D. K.
, and
Place
,
C. M.
,
1998
,
Dynamical Systems, Differential Equations, Maps and Chaotic Behavior
,
Chapman and Hall
,
New York
, pp.
77
81
.
2.
Perko
,
L.
,
1991
,
Differential Equations and Dynamical Systems
,
Springer Verlag
,
New York
, pp.
120
127
.
3.
Kirillov
,
O. N.
,
2013
,
Nonconservative Stability Problems of Modern Physics
,
Walter de Gruyter
,
Berlin
.
4.
Kelvin
,
B. W. T.
, and
Tait
,
P. G.
,
1879
,
Treatise on Natural Philosophy
,
Cambridge University Press
,
New York
.
5.
Zajac
,
E. E.
,
1964
, “
The Kelvin-Tait-Chetaev Theorem and Extensions
,”
J. Astronaut. Sci.
,
11
(
2
), pp.
46
49
.
6.
Huseyin
,
K.
,
Hagedorn
,
P.
, and
Teschner
,
W.
,
1983
, “
On the Stability of Linear Conservative Gyroscopic Systems
,”
J. Appl. Math. Phys.
,
34
(
6
), pp.
807
815
.
7.
Merkin
,
D. R.
,
1974
,
Gyroscopic Systems
,
Nauka
,
Moscow, Russia
.
8.
Bulatovic
,
R. M.
,
1999
, “
On the Stability of Linear Circulatory Systems
,”
Z. Angew. Math. Phys.
,
50
, pp.
669
674
.
9.
Udwadia
,
F. E.
,
2017
, “
Stability of Dynamical Systems With Circulatory Forces: Generalization of the Merkin Theorem
,”
Am. Inst. Aeronaut. Astronaut.
,
55
(
9
), pp.
2853
2858
.
10.
Beletsky
,
V. V.
,
1995
, “
Some Stability Problems in Applied Mechanics
,”
Appl. Math. Comput.
,
70
(
2–3
), pp.
117
141
.
11.
Zhuravlev
,
V. P.
, and
Klimov
,
D. M.
,
2010
, “
Theory of the Shimmy Phenomenon
,”
Mech. Solids
,
45
(
3
), pp.
324
330
.
12.
Hagedorn
,
P.
,
Eckstein
,
M.
,
Heffel
,
E.
, and
Wagner
,
A.
,
2014
, “
Self-Excited Vibrations and Damping in Circulatory Systems
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101008
.
13.
Spelsberg-Korspeter
,
G.
,
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2011
, “
Self-Excitation Mechanisms in Paper Calendars Formulated as a Stability Problem
,”
Tech. Mech.
,
31
(
1
), pp.
15
24
.
14.
Dowell
,
E. H.
,
2011
, “
Can Solar Sails Flutter?
,”
AIAA J.
,
49
(
6
), pp.
1305
1307
.
15.
Ziegler
,
H.
,
1953
, “
Linear Elastic Stability, a Critical Analysis of Methods—Part 1
,”
Z. Angew. Math. Phys.
,
4
(
2
), pp.
89
121
.
16.
Ziegler
,
H.
,
1953
, “
Linear Elastic Stability, a Critical Analysis of Methods—Part 2
,”
Z. Angew. Math. Phys.
,
4
(
3
), pp.
167
185
.
17.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1991
,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
, p.
103
.
18.
Lakhadanov
,
V. M.
,
1975
, “
On Stabilization of Potential Systems
,”
J. Appl. Math. Mech.
,
39
(
1
), pp.
45
50
.
19.
Karapetyan
,
A. V.
,
1975
, “
About the Stability of Nonconservative Systems
,”
Vestn. Mosk. Univ. Ser. 1: Mat. Mekh.
,
4
, pp.
109
113
.
20.
Bottema
,
O.
,
1955
, “
On the Stability of the Equilibrium of a Linear Mechanical System
,”
Z. Angew. Math. Phys.
,
6
(
2
), pp.
97
104
.
21.
Casti
,
J.
,
1992
,
Reality Rules: I
, John Wiley, New York, pp.
63
64
.
22.
Hagedorn
,
P.
, and
Hochlenert
,
D.
,
2015
,
Technische Schwingungslehre
,
Verlag-Europa-Lehrmittel
, Vollmer GmbH & Co. KG, Haan, Germany, pp.
155
157
.
You do not currently have access to this content.