A new kind of nonlinear energy sink (NES) is proposed to control the vibration of a flexible structure with simply supported boundaries in the present work. The new kind of absorber is assembled at the end of structures and absorbs energy through the rotation angle at the end of the structure. It is easy to design and attached to the support of flexible structures. The structure and the absorber are coupled just with a nonlinear restoring moment and the damper in the absorber acts on the structure indirectly. In this way, all the linear characters of the flexible structure will not be changed. The system is investigated by a special perturbation method and verified by simulation. Parameters of the absorber are fully discussed to optimize the efficiency of it. For the resonance, the maximum motion is restrained up to 90% by the optimized absorber. For the impulse, the vibration of the structure could attenuate rapidly. In addition to the high efficiency, energy transmits to the absorber uniaxially. For the high efficiency, convenience of installation and the immutability of linear characters, the new kind of rotating absorber provides a very good strategy for the vibration control.

References

1.
Vakakis
,
A. F.
, and
Gendelman
,
O. V.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
2.
Gendelman
,
O. V.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
3.
Babitsky
,
V. I.
,
1966
,
Vibro-Impact Motions of Pendulum With Inertial Suspension in Vibrating Container: Analysis and Synthesis of Automatic Machines
, Nauca, Moscow, Russia.
4.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink—Part II: Optimization of a Nonlinear Vibration Absorber
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
47
57
.
5.
Ma
,
X.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2008
, “
Karhunen-Loeve Analysis and Order Reduction of the Transient Dynamics of Linear Coupled Oscillators With Strongly Nonlinear End Attachments
,”
J. Sound Vib.
,
309
(
3–5
), pp.
569
587
.
6.
Nucera
,
F.
,
Iacono
,
F. L.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: Experimental Results
,”
J. Sound Vib.
,
313
(
1–2
), pp.
57
76
.
7.
Li
,
T.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2017
, “
On the Dynamics Around Targeted Energy Transfer for Vibro-Impact Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
87
(
3
), pp.
1453
1466
.
8.
Wierschem
,
N. E.
,
Hubbard
,
S. A.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
,
McFarland
,
D. M.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2017
, “
Response Attenuation in a Large-Scale Structure Subjected to Blast Excitation Utilizing a System of Essentially Nonlinear Vibration Absorbers
,”
J. Sound Vib.
,
389
, pp.
52
72
.
9.
Bellet
,
R.
,
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P.-O.
,
2010
, “
Experimental Study of Targeted Energy Transfer From an Acoustic System to a Nonlinear Membrane Absorber
,”
J. Sound Vib.
,
329
(
14
), pp.
2768
2791
.
10.
Bellet
,
R.
,
Cochelin
,
B.
,
Cote
,
R.
, and
Mattei
,
P.-O.
,
2012
, “
Enhancing the Dynamic Range of Targeted Energy Transfer in Acoustics Using Several Nonlinear Membrane Absorbers
,”
J. Sound Vib.
,
331
(
26
), pp.
5657
5668
.
11.
Bellizzi
,
S.
,
Cote
,
R.
, and
Pachebat
,
M.
,
2013
, “
Responses of a Two Degree-of-Freedom System Coupled to a Nonlinear Damper Under Multi-Forcing Frequencies
,”
J. Sound Vib.
,
332
(
7
), pp.
1639
1653
.
12.
Gendelman
,
O. V.
,
Sigalov
,
G.
,
Manevitch
,
L. I.
,
Mane
,
M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Dynamics of an Eccentric Rotational Nonlinear Energy Sink
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011012
.
13.
Romeo
,
F.
,
Sigalov
,
G.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2015
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Numerical Study
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011007
.
14.
Mattei
,
P.-O.
,
Poncot
,
R.
,
Pachebat
,
M.
, and
Cote
,
R.
,
2016
, “
Nonlinear Targeted Energy Transfer of Two Coupled Cantilever Beams Coupled to a Bistable Light Attachment
,”
J. Sound Vib.
,
373
, pp.
29
51
.
15.
Habib
,
G.
, and
Romeo
,
F.
,
2017
, “
The Tuned Bistable Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
89
(
1
), pp.
179
196
.
16.
Qiu
,
D.
,
Li
,
T.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2018
, “
Efficient Targeted Energy Transfer of Bistable Nonlinear Energy Sink: Application to Optimal Design
,”
Nonlinear Dyn.
,
92
(
2
), pp.
443
461
.
17.
Farid
,
M.
, and
Gendelman
,
O. V.
,
2017
, “
Tuned Pendulum as Nonlinear Energy Sink for Broad Energy Range
,”
J. Vib. Control
,
23
(
3
), pp.
373
388
.
18.
Bab
,
S.
,
Khadem
,
S. E.
, and
Shahgholi
,
M.
,
2015
, “
Vibration Attenuation of a Rotor Supported by Journal Bearings With Nonlinear Suspensions Under Mass Eccentricity Force Using Nonlinear Energy Sink
,”
Meccanica
,
50
(
9
), pp.
2441
2460
.
19.
Guo
,
C.-Z.
,
AL-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Yan
,
J.-H.
,
2015
, “
Vibration Reduction in Unbalanced Hollow Rotor Systems With Nonlinear Energy Sinks
,”
Nonlinear Dyn.
,
79
(
1
), pp.
527
538
.
20.
Dolatabadi
,
N.
,
Theodossiades
,
S.
, and
Rothberg
,
S. J.
,
2017
, “
Passive Control of Piston Secondary Motion Using Nonlinear Energy Absorbers
,”
J. Vib. Acoust.
,
139
(
5
), p.
051009
.
21.
Kremer
,
D.
, and
Liu
,
K.
,
2014
, “
A Nonlinear Energy Sink With an Energy Harvester: Transient Responses
,”
J. Sound Vib.
,
333
(
20
), pp.
4859
4880
.
22.
Mamaghani
,
A. E.
,
Khadem
,
S.
, and
Bab
,
S.
,
2016
, “
Vibration Control of a Pipe Conveying Fluid Under External Periodic Excitation Using a Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1761
1795
.
23.
Bergeot
,
B.
,
Bellizzi
,
S.
, and
Cochelin
,
B.
,
2017
, “
Passive Suppression of Helicopter Ground Resonance Using Nonlinear Energy Sinks Attached on the Helicopter Blades
,”
J. Sound Vib.
,
392
, pp.
41
55
.
24.
Motato
,
E.
,
Haris
,
A.
,
Theodossiades
,
S.
,
Mohammadpour
,
M.
,
Rahnejat
,
H.
,
Kelly
,
P.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2017
, “
Targeted Energy Transfer and Modal Energy Redistribution in Automotive Drivetrains
,”
Nonlinear Dyn.
,
87
(
1
), pp.
169
190
.
25.
Viguie
,
R.
,
Kerschen
,
G.
,
Golinval
,
J.-C.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
,
Vakakis
,
A. F.
, and
de Wouw
,
N. V.
,
2009
, “
Using Passive Nonlinear Targeted Energy Transfer to Stabilize Drill-string Systems
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
148
169
.
26.
Vakakis
,
A. F.
,
2018
, “
Passive Nonlinear Targeted Energy Transfer
,”
Phil. Trans. R. Soc. A
,
376
(
2127
), p.
20170132
.
27.
Li
,
X.
,
Zhang
,
Y.-W.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Integration of a Nonlinear Energy Sink and a Piezoelectric Energy Harvester
,”
Appl. Math. Mech.
,
38
(
7
), pp.
1019
1030
.
28.
Jiang
,
X.-A.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2003
, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
,
33
(
1
), pp.
87
102
.
29.
Gendelman
,
O. V.
,
Gourdon
,
E.
, and
Lamarque
,
C.-H.
,
2006
, “
Quasiperiodic Energy Pumping in Coupled Oscillators Under Periodic Forcing
,”
J. Sound Vib.
,
294
(
4–5
), pp.
651
662
.
30.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2007
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
325
331
.
31.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C.-H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(
3–5
), pp.
522
551
.
32.
Gendelman
,
O. V.
,
Starosvetsky
,
Y.
, and
Feldman
,
M.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink—Part I: Description of Response Regimes
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
31
46
.
33.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2009
, “
Vibration Absorption in Systems With a Nonlinear Energy Sink: Nonlinear Damping
,”
J. Sound Vib.
,
324
(
3–5
), pp.
916
939
.
34.
Yang
,
J.
,
Xiong
,
Y.-P.
, and
Xing
,
J.-T.
,
2015
, “
Power Flow Behaviour and Dynamic Performance of a Nonlinear Vibration Absorber Coupled to a Nonlinear Oscillator
,”
Nonlinear Dyn.
,
80
(
3
), pp.
1063
1079
.
35.
Xiong
,
Y.-P.
, and
Cao
,
Q.-J.
,
2011
, “
Power Flow Characteristics of Coupled Linear and Nonlinear Oscillators With Irrational Nonlinear Stiffness
,”
Seventh European Nonlinear Dynamics Conference
, Rome, Italy, July 24–29.
36.
Wei
,
Y.-M.
,
Peng
,
Z.-K.
,
Dong
,
X.-J.
,
Zhang
,
W.-M.
, and
Meng
,
G.
,
2017
, “
Mechanism of Optimal Targeted Energy Transfer
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011007
.
37.
Nguyen
,
T. A.
, and
Pernot
,
S.
,
2012
, “
Design Criteria for Optimally Tuned Nonlinear Energy Sinks—Part 1: Transient Regime
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
1
19
.
38.
Kong
,
X.-R.
,
Li
,
H.-Q.
, and
Wu
,
C.
,
2018
, “
Dynamics of 1-DoF and 2-DoF Energy Sink With Geometrically Nonlinear Damping: Application to Vibration Suppression
,”
Nonlinear Dyn.
,
91
(
1
), pp.
733
754
.
39.
Kerschen
,
G.
,
Kowtko
,
J. J.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
285
309
.
40.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2008
, “
Dynamics of a Strongly Nonlinear Vibration Absorber Coupled to a Harmonically Excited Two-Degree-of-Freedom System
,”
J. Sound Vib.
,
312
(
1–2
), pp.
234
256
.
41.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2010
, “
Interaction of Nonlinear Energy Sink With a Two Degrees of Freedom Linear System: Internal Resonance
,”
J. Sound Vib.
,
329
(
10
), pp.
1836
1852
.
42.
Ahmadabadi
,
Z. N.
, and
Khadem
,
S. E.
,
2013
, “
Annihilation of High-Amplitude Periodic Responses of a Forced Two Degrees-of-Freedom Oscillatory System Using Nonlinear Energy Sink
,”
J. Vib. Control
,
19
(
16
), pp.
2401
2412
.
43.
Tripathi
,
A.
,
Grover
,
P.
, and
Kalmar-Nagy
,
T.
,
2017
, “
On Optimal Performance of Nonlinear Energy Sinks in Multiple-Degree-of-Freedom Systems
,”
J. Sound Vib.
,
388
, pp.
272
297
.
44.
Wierschem
,
N. E.
,
Quinn
,
D. D.
,
Hubbard
,
S. A.
,
Ai-Shudeifat
,
M. A.
,
McFarland
,
D. M.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Passive Damping Enhancement of a Two-Degree-of-Freedom System Through a Strongly Nonlinear Two-Degree-of-Freedom Attachment
,”
J. Sound Vib.
,
331
(
25
), pp.
5393
5407
.
45.
Samani
,
F. S.
, and
Pellicano
,
F.
,
2009
, “
Vibration Reduction on Beams Subjected to Moving Loads Using Linear and Nonlinear Dynamic Absorbers
,”
J. Sound Vib.
,
325
(
4–5
), pp.
742
754
.
46.
Parseh
,
M.
,
Dardel
,
M.
, and
Ghasemi
,
M. H.
,
2015
, “
Investigating the Robustness of Nonlinear Energy Sink in Steady State Dynamics of Linear Beams With Different Boundary Conditions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
29
(
1–3
), pp.
50
71
.
47.
Bab
,
S.
,
Khadem
,
S. E.
,
Mahdiabadi
,
M. K.
, and
Shahgholi
,
M.
,
2017
, “
Vibration Mitigation of a Rotating Beam Under External Periodic Force Using a Nonlinear Energy Sink (NES)
,”
J. Vib. Control
,
23
(
6
), pp.
1001
1025
.
48.
Georgiades
,
F.
, and
Vakakis
,
A. F.
,
2009
, “
Passive Targeted Energy Transfers and Strong Modal Interactions in the Dynamics of a Thin Plate With Strongly Nonlinear Attachments
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2330
2353
.
49.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Dynamics of a Super-Critically Axially Moving Beam With Parametric and Forced Resonance
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1475
1487
.
50.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Forced Vibration of Axially Moving Beam With Internal Resonance in the Supercritical Regime
,”
Int. J. Mech. Sci.
,
131
, pp.
81
94
.
51.
Ding
,
H.
,
Huang
,
L.-L.
,
Mao
,
X.-Y.
, and
Chen
,
L.-Q.
,
2017
, “
Primary Resonance of Traveling Viscoelastic Beam Under Internal Resonance
,”
Appl. Math. Mech.
,
38
(
1
), pp.
1
14
.
52.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Vibration of Flexible Structures Under Nonlinear Boundary Conditions
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111006
.
53.
Mao
,
X.-Y.
,
Ding
,
H.
,
Lim
,
C. W.
, and
Chen
,
L.-Q.
,
2016
, “
Super-Harmonic Resonance and Multi-Frequency Responses of a Super-Critical Translating Beam
,”
J. Sound Vib.
,
385
, pp.
267
283
.
54.
Wang
,
Y.-L.
,
Wang
,
X.-W.
, and
Zhou
,
Y.
,
2004
, “
Static and Free Vibration Analyses of Rectangular Plates by the New Version of the Differential Quadrature Element Method
,”
Int. J. Numer. Methods Eng.
,
59
(
9
), pp.
1207
1226
.
55.
Wang
,
X.-W.
, and
Wang
,
Y.-L.
,
2013
, “
Free Vibration Analysis of Multiple-Stepped Beams by the Differential Quadrature Element Method
,”
Appl. Math. Comput.
,
219
(
11
), pp.
5802
5810
.
56.
Shu
,
C.
,
Chew
,
Y.-T.
, and
Richards
,
B. E.
,
1995
, “
Generalized Differential and Integral Quadrature and Their Application to Solve Boundary Layer Equations
,”
Int. J. Numer. Methods Fluids
,
21
(
9
), pp.
723
733
.
You do not currently have access to this content.