Abstract

To ensure both adequate axial load-bearing capacity and radial vulnerability of a circumferentially notched thin cylindrical shell is one of the major challenges in designing some crucial aerospace structures such as the pyrotechnic separation devices. The most favorable design for such a shell is to optimize the notch geometry such that zero stress at the notch root is realized, which enhances the axial strength without impacting the notch failure during separation. However, few studies have focused on such extreme stress concentration-free designs of a single-side notch on a shell because the asymmetrical structure under common eccentric loading brings much difficulty for theoretical analysis, while numerical approaches can hardly meet the requirements of highly efficient rapid optimal designs. In this paper, a theoretical and experimental study toward extreme stress concentration-free designs of single-side-notched thin cylindrical shells is presented. The general stress concentration factors (SCFs) for single-side notches with arbitrary depths are obtained based on the theory of notch stresses, which are well validated by the refined finite element modeling. An important finding reveals that, for a common notched shell in aerospace vehicles, the stress at the notch root approaches zero when a specific ratio of load eccentricity to minimum section width is attained. Comprehensive experiments for specially designed notched specimens confirm the theoretical finding. The present study provides an effective approach to analyzing single-side-notched structures and yields an explicit quantitative guideline for the optimal design of circumferentially notched thin cylindrical shells.

References

1.
Bement
,
L. J.
,
1988
, “
Pyrotechnic System Failures: Causes and Prevention
,”
National Aeronautics and Space Administration
,
Washington, DC
, Technical Report No. NASA-TM-100633.
2.
Bement
,
L. J.
, and
Multhaup
,
H. A.
,
1997
, “
Determining Functional Reliability of Pyrotechnic Mechanical Devices
,”
AIAA J.
,
37
(
3
), pp.
357
363
. 10.2514/2.737
3.
Bement
,
L. J.
, and
Schimmel
,
M. L.
,
1992
, “
Determination of Pyrotechnic Functional Margin
,”
The First NASA Aerospace Pyrotechnic Systems Workshop
,
Houston, TX
,
June 9–10
, pp.
34
50
.
4.
Bement
,
L. J.
, and
Schimmel
,
M. L.
,
1993
, “
Integration of Pyrotechnics Into Aerospace Systems
,”
27th Aerospace Mechanisms Symposium
,
Moffett Field, CA
,
May 12–14
, pp.
93
106
.
5.
Bement
,
L. J.
, and
Schimmel
,
M. L.
,
1995
, “
A Manual for Pyrotechnic Design, Development and Qualification
,”
National Aeronautics and Space Administration
,
Washington, DC
, Technical Report No. NASA-TM-110172.
6.
Lake
,
E. R.
,
Thompson
,
S. J.
, and
Drexelius
,
V. W.
,
1973
, “
A Study of the Role of Pyrotechnic Systems on the Space Shuttle Program
,”
National Aeronautics and Space Administration
,
Washington, DC
, Technical Report No. NASA-CR-2292.
7.
Pedersen
,
M. M.
,
Mouritsen
,
O. Ø.
,
Hansen
,
M. R.
,
Andersen
,
J. G.
, and
Wenderby
,
J.
,
2010
, “
Re-Analysis of Fatigue Data for Welded Joints Using the Notch Stress Approach
,”
Int. J. Fatigue
,
32
(
10
), pp.
1620
1626
. 10.1016/j.ijfatigue.2010.03.001
8.
Remes
,
H.
, and
Varsta
,
P.
,
2010
, “
Statistics of Weld Geometry for Laser-Hybrid Welded Joints and Its Application Within Notch Stress Approach
,”
Weld. World
,
54
(
7–8
), pp.
189
207
. 10.1007/BF03263505
9.
Sinclair
,
G. B.
,
Beisheim
,
J. R.
, and
Kardak
,
A. A.
,
2019
, “
On the Detection of Stress Singularities in Finite Element Analysis
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
021005
. 10.1115/1.4041766
10.
Neuber
,
H.
,
1946
,
Theory of Notch Stresses: Principles for Exact Stress Calculation
,
Edwards Brothers
,
Ann Arbor, MI
.
11.
Leven
,
M. M.
, and
Frocht
,
M. M.
,
1952
, “
Stress-Concentration Factors for Single Notch in Flat Bar in Pure and Central Bending
,”
ASME J. Appl. Mech.
,
19
(
4
), pp.
560
561
. 10.1016/b978-0-08-012998-3.50020-3
12.
Nisitani
,
H.
, and
Noda
,
N.
,
1984
, “
Stress-Concentration of a Cylindrical Bar With a V-Shaped Circumferential Groove Under Torsion, Tension or Bending
,”
Eng. Fract. Mech.
,
20
(
5–6
), pp.
743
766
. 10.1016/0013-7944(84)90084-5
13.
Hoffmann
,
M.
, and
Seeger
,
T.
,
1985
, “
A Generalized-Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains. 1. Theory
,”
ASME J. Eng. Mater. Technol.
,
107
(
4
), pp.
250
254
. 10.1115/1.3225814
14.
Nao-Aki
,
N.
, and
Hironobu
,
N.
,
1987
, “
Stress Concentration of a Strip With a Single Edge Notch
,”
Eng. Fract. Mech.
,
28
(
2
), pp.
223
238
. 10.1016/0013-7944(87)90216-5
15.
Gray
,
T. G. F.
,
Tournery
,
F.
,
Spence
,
J.
, and
Brennan
,
D.
,
1995
, “
Closed-Form Functions for Elastic Stress Concentration Factors in Notched Bars
,”
J. Strain Anal. Eng. Des.
,
30
(
2
), pp.
143
154
. 10.1243/03093247V302143
16.
Noda
,
N. A.
,
Sera
,
M.
, and
Takase
,
Y.
,
1995
, “
Stress Concentration Factors for Round and Flat Test Specimens With Notches
,”
Int. J. Fatigue
,
17
(
3
), pp.
163
178
. 10.1016/0142-1123(95)98937-X
17.
Hufenbach
,
W.
, and
Kroll
,
L.
,
1999
, “
Stress Analysis of Notched Anisotropic Finite Plates Under Mechanical and Hygrothermal Loads
,”
Arch. Appl. Mech.
,
69
(
3
), pp.
145
159
. 10.1007/s004190050211
18.
Noda
,
N. A.
, and
Takase
,
Y.
,
1999
, “
Stress Concentration Formulae Useful for Any Shape of Notch in a Round Test Specimen Under Tension and Under Bending
,”
Fatigue Fract. Eng. Mater. Struct.
,
22
(
12
), pp.
1071
1082
. 10.1046/j.1460-2695.1999.00230.x
19.
Noda
,
N. A.
, and
Takase
,
Y.
,
2006
, “
Stress Concentration Formula Useful for All Notch Shape in a Round Bar (Comparison Between Torsion, Tension and Bending)
,”
Int. J. Fatigue
,
28
(
2
), pp.
151
163
. 10.1016/j.ijfatigue.2005.04.015
20.
Chiang
,
C. R.
,
2015
, “
Stress Concentration Around a Triaxial Ellipsoidal Cavity in Transversely Isotropic Materials
,”
Arch. Appl. Mech.
,
85
(
4
), pp.
469
479
. 10.1007/s00419-014-0923-1
21.
Batista
,
M.
,
2011
, “
On the Stress Concentration Around a Hole in an Infinite Plate Subject to a Uniform Load at Infinity
,”
Int. J. Mech. Sci.
,
53
(
4
), pp.
254
261
. 10.1016/j.ijmecsci.2011.01.006
22.
Berto
,
F.
, and
Lazzarin
,
P.
,
2010
, “
Fictitious Notch Rounding Approach of Pointed V-Notch Under In-Plane Shear
,”
Theor. Appl. Fract. Mech.
,
53
(
2
), pp.
127
135
. 10.1016/j.tafmec.2010.03.003
23.
Jafari
,
M.
, and
Ardalani
,
E.
,
2016
, “
Stress Concentration in Finite Metallic Plates With Regular Holes
,”
Int. J. Mech. Sci.
,
106
, pp.
220
230
. 10.1016/j.ijmecsci.2015.12.022
24.
Khakalo
,
S.
, and
Niiranen
,
J.
,
2017
, “
Gradient-Elastic Stress Analysis Near Cylindrical Holes in a Plane Under Bi-Axial Tension Fields
,”
Int. J. Solids Struct.
,
110–111
, pp.
351
366
. 10.1016/j.ijsolstr.2016.10.025
25.
Lubarda
,
V. A.
,
2015
, “
On the Circumferential Shear Stress Around Circular and Elliptical Holes
,”
Arch. Appl. Mech.
,
85
(
2
), pp.
223
235
. 10.1007/s00419-014-0915-1
26.
Rezaeepazhand
,
J.
, and
Jafari
,
M.
,
2010
, “
Stress Concentration in Metallic Plates With Special Shaped Cutout
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
96
102
. 10.1016/j.ijmecsci.2009.10.013
27.
Zappalorto
,
M.
,
Berto
,
F.
, and
Lazzarin
,
P.
,
2011
, “
Practical Expressions for the Notch Stress Concentration Factors of Round Bars Under Torsion
,”
Int. J. Fatigue
,
33
(
3
), pp.
382
395
. 10.1016/j.ijfatigue.2010.09.016
28.
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2018
, “
Circular Inhomogeneity With Steigmann-Ogden Interface: Local Fields, Neutrality and Maxwell's Type Approximation Formula
,”
Int. J. Solids Struct.
,
135
, pp.
85
98
. 10.1016/j.ijsolstr.2017.11.012
29.
Shahzad
,
S.
, and
Niiranen
,
J.
,
2018
, “
Analytical Solutions and Stress Concentration Factors for Annuli With Inhomogeneous Boundary Conditions
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071008
. 10.1115/1.4040079
30.
Wang
,
B.
,
Shi
,
Y.
,
Li
,
R.
, and
Wang
,
B.
,
2018
, “
A Simplified Indirect Measuring Method for the Notch Stress in a Thin Cylindrical Shell
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071009
. 10.1115/1.4039950
31.
Sutton
,
M. A.
,
Mcneill
,
S. R.
,
Helm
,
J. D.
, and
Chao
,
Y. J.
,
2000
, “
Advances in Two-Dimensional and Three-Dimensional Computer Vision
,”
Top. Appl. Phys.
,
77
(
1
), pp.
323
372
. 10.1007/3-540-48800-6_10
32.
Soons
,
J.
,
Lava
,
P.
,
Debruyne
,
D.
, and
Dirckx
,
J.
,
2012
, “
Full-Field Optical Deformation Measurement in Biomechanics: Digital Speckle Pattern Interferometry and 3D Digital Image Correlation Applied to Bird Beaks
,”
J. Mech. Behav. Biomed. Mater.
,
14
(
10
), p.
186
191
. 10.1016/j.jmbbm.2012.05.004
33.
Yang
,
H.
,
Yao
,
X.
,
Wang
,
S.
,
Ke
,
Y.
,
Huang
,
S.
, and
Liu
,
Y.
,
2018
, “
Analysis and Inversion of Contact Stress for the Finite Thickness Neo-Hookean Layer
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101008
. 10.1115/1.4040598
34.
Lindner
,
D.
,
Mathieu
,
F.
,
Hild
,
F.
,
Allix
,
O.
,
Ha Minh
,
C.
, and
Pauliencamy
,
O.
,
2015
, “
On the Evaluation of Stress Triaxiality Fields in a Notched Titanium Alloy Sample Via Integrated Digital Image Correlation
,”
ASME J. Appl. Mech.
,
82
(
7
), pp.
77
82
. 10.1115/1.4030457
35.
Pan
,
B.
,
Qian
,
K.
,
Xie
,
H.
, and
Asundi
,
A.
,
2009
, “
Topical Review: Two-Dimensional Digital Image Correlation for In-Plane Displacement and Strain Measurement: A Review
,”
Meas. Sci. Technol.
,
20
(
6
), pp.
152
154
. 10.1088/0957-0233/20/6/062001
36.
Molski
,
K.
, and
Glinka
,
G.
,
1981
, “
A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root
,”
Mater. Sci. Eng.
,
50
(
1
), pp.
93
100
. 10.1016/0025-5416(81)90089-6
You do not currently have access to this content.