Abstract

A continuum theory of elasticity based on the concept of interface free energy density is proposed to account for the effect of incoherent interfaces in nano-phase reinforced composites. With the help of the lattice model, the corresponding interface energy density is formulated in terms of the surface free energy densities of two bulk materials forming interfaces, the lattice relaxation parameters due to the spontaneous surface relaxation and lattice misfit parameters yielded by interface incoherency, while the stress jump at interfaces is formulated with an interface-induced traction as a function of interface free energy density. Compared with existing theories, the interface elastic constants difficult to determine are no longer introduced, and all the parameters involved in the present theory have definite physical meanings and can be easily determined. The coupling effects of characteristic size and interface structure in nanoparticle-reinforced composites are further analyzed with the present theory. It is found that both the decrease of nanoparticle size and the increase of interface incoherence will lead to the decrease of interface fracture toughness and increase of effective bulk and shear moduli of nanocomposites. All these results predicted by the present theory are consistent well with those obtained by previous experiments and computations, which further indicate that the present theory can effectively predict the mechanical properties of nanomaterials with complex interfaces, such as nano-phase reinforced composites and nano-scale metal multilayer composites.

References

1.
Carroll
,
L.
,
Sternitzke
,
M.
, and
Derby
,
B.
,
1996
, “
Silicon Carbide Particle Size Effects in Alumina-Based Nanocomposites
,”
Acta. Mater.
,
44
(
11
), pp.
4543
4552
. 10.1016/1359-6454(96)00074-2
2.
Reynaud
,
E.
,
Jouen
,
T.
,
Gauthier
,
C.
,
Vigier
,
G.
, and
Varlet
,
V.
,
2001
, “
Nanofillers in Polymeric Matrix: A Study on Silica Reinforced PA6
,”
Polymer
,
42
(
21
), pp.
8759
8768
. 10.1016/S0032-3861(01)00446-3
3.
Jordan
,
J.
,
Jacob
,
K. I.
,
Tannenbaum
,
R.
,
Sharaf
,
M. A.
, and
Jasiuk
,
I.
,
2005
, “
Experimental Trends in Polymer Nanocomposites—A Review
,”
Mater. Sci. Eng. A
,
393
(
1–2
), pp.
1
11
. 10.1016/j.msea.2004.09.044
4.
Fu
,
S. Y.
,
Feng
,
X. Q.
,
Lauke
,
B.
, and
Mai
,
Y. W.
,
2008
, “
Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites
,”
Compos. Part B
,
39
(
6
), pp.
933
961
. 10.1016/j.compositesb.2008.01.002
5.
Al-Saleh
,
M. H.
, and
Sundararaj
,
U.
,
2011
, “
Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites
,”
Compos. Part A
,
42
(
12
), pp.
2126
2142
. 10.1016/j.compositesa.2011.08.005
6.
Suryanarayana
,
C.
, and
Al-Aqeeli
,
N.
,
2013
, “
Mechanically Alloyed Nanocomposites
,”
Prog. Mater. Sci.
,
58
(
4
), pp.
383
502
. 10.1016/j.pmatsci.2012.10.001
7.
Sander
,
D.
,
2003
, “
Surface Stress: Implications and Measurements
,”
Curr. Opin. Solid State Mater. Sci.
,
7
(
1
), pp.
51
57
. 10.1016/S1359-0286(02)00137-7
8.
Dingreville
,
R.
, and
Qu
,
J. M.
,
2008
, “
Interfacial Excess Energy, Excess Stress and Excess Strain in Elastic Solids: Planar Interfaces
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1944
1954
. 10.1016/j.jmps.2007.11.003
9.
Gibbs
,
J. W.
,
1928
,
Collected Works
,
Longmans, Green, and Company
,
New York
, p.
314
.
10.
Shuttleworth
,
R.
,
1950
, “
The Surface Tension of Solids
,”
Proc. Phys. Soc. A
,
63
(
5
), pp.
444
457
. 10.1088/0370-1298/63/5/302
11.
Cammarata
,
R. C.
,
1997
, “
Surface and Interface Stress Effects on Interfacial and Nanostructured Materials
,”
Mater. Sci. Eng. A
,
237
(
2
), pp.
180
184
. 10.1016/S0921-5093(97)00128-7
12.
Sutton
,
A. P.
, and
Balluffi
,
R. W.
,
1995
,
Interfaces in Crystalline Materials
,
Oxford Press
,
London
.
13.
Romanov
,
A. E.
,
Wagner
,
T.
, and
Rühle
,
M.
,
1998
, “
Coherent to Incoherent Transition in Mismatched Interfaces
,”
Scr. Mater.
,
38
(
6
), pp.
869
875
. 10.1016/S1359-6462(97)00570-8
14.
Mi
,
C. W.
,
Jun
,
S.
,
Kouris
,
D. A.
, and
Kim
,
S. Y.
,
2008
, “
Atomistic Calculations of Interface Elastic Properties in Noncoherent Metallic Bilayers
,”
Phys. Rev. B
,
77
(
7
), p.
075425
. 10.1103/PhysRevB.77.075425
15.
Lu
,
K.
,
Lu
,
L.
, and
Suresh
,
S.
,
2009
, “
Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale
,”
Science
,
324
(
5925
), pp.
349
352
. 10.1126/science.1159610
16.
Dingreville
,
R.
,
Hallil
,
A.
, and
Berbenni
,
S.
,
2014
, “
From Coherent to Incoherent Mismatched Interfaces: A Generalized Continuum Formulation of Surface Stresses
,”
J. Mech. Phys. Solids
,
72
(
1
), pp.
40
60
. 10.1016/j.jmps.2014.08.003
17.
Weng
,
S. Y.
,
Ning
,
H. M.
,
Hu
,
N.
,
Yan
,
C.
,
Fu
,
T.
,
Peng
,
X. H.
,
Fu
,
S. Y.
,
Zhang
,
J. Y.
,
Xu
,
C. H.
,
Sun
,
D. Y.
,
Liu
,
Y. L.
, and
Wu
,
L. K.
,
2016
, “
Strengthening Effects of Twin Interface in Cu/Ni Multilayer Thin Films—A Molecular Dynamic Study
,”
Mater. Des.
,
111
, pp.
1
8
. 10.1016/j.matdes.2016.08.069
18.
Ponce
,
F. A.
,
1982
, “
Fault-Free Silicon at the Silicon/Sapphire Interface
,”
Appl. Phys. Lett.
,
41
(
4
), pp.
371
373
. 10.1063/1.93531
19.
Mittemeijer
,
E. J.
,
2011
,
Fundamentals of Materials Science-The Microstructure-Property Relationship Using Metals as Model Systems
,
Springer Verlag
,
Berlin
.
20.
Leo
,
P. H.
, and
Schwartz
,
M. H.
,
2000
, “
The Energy of Semicoherent Interfaces
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2539
2557
. 10.1016/S0022-5096(00)00017-X
21.
Carlotti
,
G.
,
Fioretto
,
D.
,
Socino
,
G.
,
Rodmacq
,
B.
, and
Pelosin
,
V.
,
1992
, “
Interface Effects and Elastic Constants of Ag/Ni Superlattices Studied by Brillouin Scattering
,”
J. Appl. Phys.
,
71
(
10
), pp.
4897
4902
. 10.1063/1.350636
22.
Wolf
,
D.
, and
Jaszczak
,
J. A.
,
1994
, “
Tailored Elastic Behavior of Multilayers Through Controlled Interface Structure
,”
J. Comput. Aided Mater. Des.
,
1
(
2
), pp.
111
148
. 10.1007/BF00708705
23.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Rat. Mech. Anal.
,
57
(
4
), pp.
291
323
. 10.1007/BF00261375
24.
Wolfer
,
W. G.
,
2011
, “
Elastic Properties of Surfaces on Nanoparticles
,”
Acta Mater.
,
59
(
20
), pp.
7736
7743
. 10.1016/j.actamat.2011.08.033
25.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
Appl. Phys. Lett.
,
90
(
23
), p.
231904
. 10.1063/1.2746950
26.
He
,
J.
, and
Lilley
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
. 10.1021/nl0733233
27.
Song
,
F.
,
Huang
,
G. L.
,
Park
,
H. S.
, and
Liu
,
X. N.
,
2011
, “
A Continuum Model for the Mechanical Behavior of Nanowires Including Surface and Surface-Induced Initial Stresses
,”
Int. J. Solids Struct.
,
48
(
14–15
), pp.
2154
2163
. 10.1016/j.ijsolstr.2011.03.021
28.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2103
2115
. 10.1016/j.jmps.2011.06.007
29.
Lim
,
C. W.
, and
He
,
L. H.
,
2004
, “
Size-Dependent Nonlinear Response of Thin Elastic Films With Nanoscale Thickness
,”
Int. J. Solids Struct.
,
46
(
11
), pp.
1715
1726
.
30.
Huang
,
D. W.
,
2008
, “
Size-Dependent Response of Ultra-Thin Films With Surface Effects
,”
Int. J. Solids Struct.
,
45
(
2
), pp.
568
579
. 10.1016/j.ijsolstr.2007.08.006
31.
Zhu
,
Y. C.
,
Wei
,
Y. H.
, and
Guo
,
X.
,
2017
, “
Gurtin-Murdoch Surface Elasticity Theory Revisit: An Orbital-Free Density Functional Theory Perspective
,”
J. Mech. Phys. Solids
,
109
, pp.
178
197
. 10.1016/j.jmps.2017.08.009
32.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nanoinhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
. 10.1063/1.1539929
33.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nanoinhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
. 10.1016/j.jmps.2005.02.009
34.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects. Part I: Theoretical Framework
,”
Mech. Mater.
,
39
(
1
), pp.
81
93
. 10.1016/j.mechmat.2006.02.009
35.
Hasheminejad
,
S. M.
, and
Avazmohammadi
,
R.
,
2009
, “
Size-Dependent Effective Dynamic Properties of Unidirectional Nanocomposites With Interface Energy Effects
,”
Compos. Sci. Technol.
,
69
(
15–16
), pp.
2538
2546
. 10.1016/j.compscitech.2009.07.007
36.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
Grotta
,
A. L.
, and
Stolarski
,
H. K.
,
2010
, “
The Effects of Surface Elasticity and Surface Tension on the Transverse Overall Elastic Behavior of Unidirectional Nanocomposites
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
427
434
. 10.1016/j.compscitech.2009.11.012
37.
Li
,
P. J.
,
Wang
,
Q. Z.
, and
Shi
,
S. F.
,
2011
, “
Differential Scheme for the Effective Elastic Properties of Nanoparticle Composites With Interface Effect
,”
Comput. Mater. Sci.
,
50
(
11
), pp.
3230
3237
. 10.1016/j.commatsci.2011.06.006
38.
Chen
,
Y. Q.
,
Zhang
,
Z. G.
,
Huang
,
R. C.
, and
Huang
,
Z. P.
,
2016
, “
Effect of Residual Interface Stress on Thermoelastic Properties of Unidirectional Fiber-Reinforced Nanocomposites
,”
Int. J. Mech. Sci.
,
113
, pp.
133
147
. 10.1016/j.ijmecsci.2016.04.006
39.
Kushch
,
V. I.
,
2018
, “
Stress Field and Effective Elastic Moduli of Periodic Spheroidal Particle Composite With Gurtin-Murdoch Interface
,”
Int. J. Eng. Sci.
,
132
, pp.
79
96
. 10.1016/j.ijengsci.2018.08.001
40.
Huang
,
Z. P.
, and
Wang
,
J.
,
2006
, “
A Theory of Hyperelasticity of Multiphase Media With Surface/Interface Energy Effect
,”
Acta Mech.
,
182
(
3–4
), pp.
195
210
. 10.1007/s00707-005-0286-3
41.
Gao
,
X.
,
Huang
,
Z. P.
,
Qu
,
J. M.
, and
Fang
,
D. N.
,
2014
, “
A Curvature-Dependent Interfacial Energy-Based Interface Stress Theory and Its Applications to Nanostructured Materials: (I) General Theory
,”
J. Mech. Phys. Solids
,
66
, pp.
59
77
. 10.1016/j.jmps.2014.01.010
42.
Cahn
,
J. W.
, and
Lärché
,
F.
,
1982
, “
Surface Stress and the Chemical Equilibrium of Small Crystals-II. Solid Particles Embedded in a Solid Matrix
,”
Acta Metall.
,
30
(
1
), pp.
51
56
. 10.1016/0001-6160(82)90043-8
43.
Chen
,
S. H.
, and
Yao
,
Y.
,
2014
, “
Elastic Theory of Nanomaterials Based on Surface Energy Density
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121002
. 10.1115/1.4028780
44.
Yao
,
Y.
,
Chen
,
S. H.
, and
Fang
,
D. N.
,
2017
, “
An Interface Energy Density-Based Theory Considering the Coherent Interface Effect in Nanomaterials
,”
J. Mech. Phys. Solids
,
99
, pp.
321
337
. 10.1016/j.jmps.2016.12.009
45.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
An Atomic Interpretation of Interface Stress
,”
Scr. Mater.
,
39
(
12
), pp.
1653
1661
. 10.1016/S1359-6462(98)00352-2
46.
Good
,
R. J.
,
Girifalco
,
L. A.
, and
Kraus
,
G.
,
1958
, “
A Theory for Estimation of Interfacial Energies. II. Application to Surface Thermodynamics of Teflon and Graphite
,”
J. Phys. Chem.
,
62
(
11
), pp.
1418
1421
. 10.1021/j150569a016
47.
Fowkes
,
F. M.
,
1964
, “
Attractive Forces at Interfaces
,”
Ind. Eng. Chem.
,
56
(
12
), pp.
40
52
. 10.1021/ie50660a008
48.
Zhu
,
Y.
,
Qin
,
Q. Q.
,
Gu
,
Y.
, and
Wang
,
Z. L.
,
2010
, “
Friction and Shear Strength at the Nanowire–Substrate Interfaces
,”
Nanoscale Res. Lett.
,
5
(
2
), pp.
291
295
. 10.1007/s11671-009-9478-4
49.
Streitz
,
F. H.
,
Cammarata
,
R. C.
, and
Sieradzki
,
K.
,
1994
, “
Surface-Stress Effects on Elastic Properties I. Thin Metal Films
,”
Phys. Rev. B
,
49
(
15
), pp.
10699
10706
. 10.1103/PhysRevB.49.10699
50.
Medasani
,
B.
, and
Vasiliev
,
I.
,
2009
, “
Computational Study of the Surface Properties of Aluminum Nanoparticles
,”
Surf. Sci.
,
603
(
13
), pp.
2042
2046
. 10.1016/j.susc.2009.03.025
51.
Zhang
,
C.
,
Yao
,
Y.
, and
Chen
,
S. H.
,
2014
, “
Size-Dependent Surface Energy Density of Typically Fcc Metallic Nanomaterials
,”
Comput. Mater. Sci.
,
82
(
1
), pp.
372
377
. 10.1016/j.commatsci.2013.10.015
52.
Sun
,
C. Q.
,
2003
, “
Oxidation Electronics: Bond–Band–Barrier Correlation and Its Applications
,”
Prog. Mater. Sci.
,
48
(
6
), pp.
521
685
. 10.1016/S0079-6425(03)00010-0
53.
Tammi
,
Y.
,
Makuuchi
,
K.
, and
Suzuki
,
M.
,
1967
, “
Experimental Analysis of Interfacial Forces at the Plane Surface of Solids
,”
J. Phys. Chem.
,
71
(
13
), pp.
4176
4179
. 10.1021/j100872a002
54.
Gao
,
Y. C.
,
Mai
,
Y. W.
, and
Cotterell
,
B.
,
1988
, “
Fracture of Fiber-Reinforced Materials
,”
J. Appl. Math. Phys.
,
39
(
4
), pp.
550
572
. 10.1007/BF00948962
55.
Hughes
,
J. D. H.
,
1991
, “
The Carbon Fiber/Epoxy Interface—A Review
,”
Compos. Sci. Technol.
,
41
(
1
), pp.
31
45
.
56.
Benveniste
,
Y.
,
1985
, “
The Effective Mechanical Behaviour of Composite Materials With Imperfect Contact Between the Constituents
,”
Mech. Mater.
,
4
(
2
), pp.
197
208
. 10.1016/0167-6636(85)90016-X
57.
Chen
,
T. Y.
,
Chiu
,
M. S.
, and
Weng
,
C. N.
,
2006
, “
Derivation of the Generalized Young-Laplace Equation of Curved Interfaces in Nanoscaled Solids
,”
J. Appl. Phys.
,
100
(
7
), p.
074308
. 10.1063/1.2356094
58.
Shen
,
G. L.
, and
Hu
,
G. K.
,
2006
,
Mechanics of Composite Materials
,
Tsinghua University Press
,
Beijing
.
59.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials
,”
Mech. Mater.
,
6
(
2
), pp.
147
157
. 10.1016/0167-6636(87)90005-6
60.
Christensen
,
R. M.
, and
Lo
,
K. H.
,
1979
, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
(
4
), pp.
315
330
. 10.1016/0022-5096(79)90032-2
61.
Jiang
,
Q.
, and
Lu
,
H. M.
,
2008
, “
Size Dependent Interface Energy and Its Applications
,”
Surf. Sci. Rep.
,
63
(
10
), pp.
427
464
. 10.1016/j.surfrep.2008.07.001
62.
Eringen
,
A. C.
,
1980
,
Mechanics of Continua
,
Robert E. Krieger Publishing Co.
,
New York
.
63.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
2013
,
Matrix Analysis
, 2nd ed.,
Cambridge University Press
,
New York
.
64.
Vitos
,
L.
,
Ruban
,
A. V.
,
Skriver
,
H. L.
, and
Kollár
,
J.
,
1998
, “
The Surface Energy of Metals
,”
Surf. Sci.
,
411
(
1–2
), pp.
186
202
. 10.1016/S0039-6028(98)00363-X
65.
Sheng
,
H. W.
,
Kramer
,
M. J.
,
Cadien
,
A.
,
Fujita
,
T.
, and
Chen
,
M. W.
,
2011
, “
Highly Optimized Embedded-Atom-Method Potentials for Fourteen Fcc Metals
,”
Phys. Rev. B
,
83
(
13
), p.
134118
. 10.1103/PhysRevB.83.134118
66.
Asta
,
M.
, and
Hoyt
,
J. J.
,
2000
, “
Thermodynamic Properties of Coherent Interfaces in Fcc-Based Ag–Al Alloys: A First-Principles Study
,”
Acta Mater.
,
48
(
5
), pp.
1089
1096
. 10.1016/S1359-6454(99)00412-7
67.
Kaptay
,
G.
,
2012
, “
On the Interfacial Energy of Coherent Interfaces
,”
Acta Mater.
,
60
(
19
), pp.
6804
6813
. 10.1016/j.actamat.2012.09.002
68.
Yu
,
Y. N.
,
2006
,
Fundamentals of Materials Science
,
Higher Education Press
,
Beijing
.
69.
Mei
,
J.
, and
Fernando
,
G. W.
,
1991
, “
Anomalies in the Elastic Properties of Metallic Multilayers
,”
Phys. Rev. Lett.
,
66
(
14
), pp.
1882
1885
. 10.1103/PhysRevLett.66.1882
70.
Faber
,
K. T.
, and
Evans
,
A. G.
,
1983
, “
Crack Deflection Processes-I. Theory
,”
Acta Metall.
,
31
(
4
), pp.
565
576
. 10.1016/0001-6160(83)90046-9
71.
Liu
,
H. Y.
,
Wang
,
G. T.
,
Mai
,
Y. W.
, and
Zeng
,
Y.
,
2011
, “
On Fracture Toughness of Nanoparticle Modified Epoxy
,”
Compos. Part B
,
42
(
8
), pp.
2170
2175
. 10.1016/j.compositesb.2011.05.014
72.
Zamanian
,
M.
,
Mortezaei
,
M.
,
Salehnia
,
B.
, and
Jam
,
J. E.
,
2013
, “
Fracture Toughness of Epoxy Polymer Modified With Nanosilica Particles: Particle Size Effect
,”
Eng. Fract. Mech.
,
97
, pp.
193
206
. 10.1016/j.engfracmech.2012.10.027
73.
Cho
,
J.
, and
Sun
,
C. T.
,
2007
, “
A Molecular Dynamics Simulation Study of Inclusion Size Effect on Polymeric Nanocomposites
,”
Comput. Mater. Sci.
,
41
(
1
), pp.
54
62
. 10.1016/j.commatsci.2007.03.001
74.
Yang
,
Z. Y.
, and
Lu
,
Z. X.
,
2013
, “
Atomistic Simulation of the Mechanical Behaviors of Co-Continuous Cu/SiC Nanocomposites
,”
Compos. Part B
,
44
(
1
), pp.
453
457
. 10.1016/j.compositesb.2012.04.010
75.
Barnett
,
S. A.
, and
Shinn
,
M.
,
1994
, “
Plastic and Elastic Properties of Compositionally Modulated Thin Films
,”
Annu. Rev. Mater. Sci.
,
24
(
1
), pp.
481
511
. 10.1146/annurev.ms.24.080194.002405
76.
Mastorakos
,
I. N.
,
Zbib
,
H. M.
, and
Bahr
,
D. F.
,
2009
, “
Deformation Mechanisms and Strength in Nanoscale Multilayer Metallic Composites With Coherent and Incoherent Interfaces
,”
Appl. Phys. Lett.
,
94
(
17
), p.
173114
. 10.1063/1.3129166
77.
Fullerton
,
E. E.
,
Schuller
,
I. K.
,
Parker
,
F. T.
,
Svinarich
,
K. A.
,
Eesley
,
G. L.
,
Bhadra
,
R.
, and
Grimsditch
,
M.
,
1993
, “
Relationship Between Structural Phase Transitions and Elastic Anomalies in Metallic Superlattices
,”
J. Appl. Phys.
,
73
(
11
), pp.
7370
7375
. 10.1063/1.354028
78.
Fu
,
S. Y.
,
Yue
,
C. Y.
,
Hu
,
X.
, and
Mai
,
Y. W.
,
2000
, “
On the Elastic Stress Transfer and Longitudinal Modulus of Unidirectional Multi-Short-Fiber Composites
,”
Compos. Sci. Technol.
,
60
(
16
), pp.
3001
3012
. 10.1016/S0266-3538(00)00173-1
79.
Teng
,
H.
,
2010
, “
Stiffness Properties of Particulate Composites Containing Debonded Particles
,”
Int. J. Solids Struct.
,
47
(
17
), pp.
2191
2200
. 10.1016/j.ijsolstr.2010.04.004
You do not currently have access to this content.