Abstract

Three-dimensional (3D) serpentine mesostructures assembled by mechanics-guided, deterministic 3D assembly have potential applications in energy harvesting, mechanical sensing, and soft robotics. One limitation is that the serpentine structures are required to have sufficient bending stiffness such that they can overcome the adhesion with the underlying substrate to fully buckle into the 3D shape (global buckling). This note introduces the use of cellular substrate in place of conventional homogeneous substrate to reduce the adhesion energy and therefore ease the above limitation. A theoretical model based on energetic analysis suggests that cellular substrates significantly enlarge the design space of global buckling. Numerical examples show that the enlarged design space enables 3D serpentine structures with reduced maximum strains and resonant frequencies, which offers more possibilities for their potential applications.

References

1.
Nyein
,
H. Y. Y.
,
Tai
,
L. C.
,
Ngo
,
Q. P.
,
Chao
,
M.
,
Zhang
,
G. B.
,
Gao
,
W.
,
Bariya
,
M.
,
Bullock
,
J.
,
Kim
,
H.
,
Fahad
,
H. M.
, and
Javey
,
A.
,
2018
, “
A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis
,”
ACS Sens.
,
3
(
5
), pp.
944
952
. 10.1021/acssensors.7b00961
2.
Wang
,
S. D.
,
Li
,
M.
,
Wu
,
J.
,
Kim
,
D. H.
,
Lu
,
N. S.
,
Su
,
Y. W.
,
Kang
,
Z.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Mechanics of Epidermal Electronics
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031022
. 10.1115/1.4005963
3.
Yang
,
S. X.
,
Qiao
,
S. T.
, and
Lu
,
N. S.
,
2017
, “
Elasticity Solutions to Nonbuckling Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021004
. 10.1115/1.4035118
4.
Li
,
Y. H.
,
Zhang
,
J. P.
,
Xing
,
Y. F.
, and
Song
,
J. Z.
,
2017
, “
Thermomechanical Analysis of Epidermal Electronic Devices Integrated with Human Skin
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111004
. 10.1115/1.4037704
5.
Yan
,
Z. G.
,
Wang
,
B. L.
, and
Wang
,
K. F.
,
2018
, “
Thermal Effects on the Structural Response of Planar Serpentine Interconnects
,”
Int. J. Mech. Sci.
,
135
, pp.
23
30
. 10.1016/j.ijmecsci.2017.11.006
6.
Zhu
,
F.
,
Xiao
,
H.
,
Li
,
H.
,
Huang
,
Y.
, and
Ma
,
Y.
,
2019
, “
Irregular Hexagonal Cellular Substrate for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
034501
. 10.1115/1.4042288
7.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
A Mechanics Model of Soft Network Materials with Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson’s Ratios
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051003
. 10.1115/1.4039374
8.
Dong
,
W.
,
Wang
,
Y.
,
Zhou
,
Y.
,
Bai
,
Y.
,
Ju
,
Z.
,
Guo
,
J.
,
Gu
,
G.
,
Bai
,
K.
,
Ouyang
,
G.
,
Chen
,
S.
, and
Zhang
,
Q.
,
2018
, “
Soft Human-Machine Interfaces: Design, Sensing and Stimulation
,”
Int. J. Intel. Robot. Appl.
,
2
(
3
), pp.
313
338
. 10.1007/s41315-018-0060-z
9.
Sim
,
K.
,
Rao
,
Z.
,
Zou
,
Z.
,
Ershad
,
F.
,
Lei
,
J.
,
Thukral
,
A.
,
Chen
,
J.
,
Huang
,
Q. A.
,
Xiao
,
J.
, and
Yu
,
C.
,
2019
, “
Metal Oxide Semiconductor Nanomembrane-Based Soft Unnoticeable Multifunctional Electronics for Wearable Human-Machine Interfaces
,”
Sci. Adv.
,
5
(
8
), p.
eaav9653
. 10.1126/sciadv.aav9653
10.
Jung
,
S.
,
Kim
,
J. H.
,
Kim
,
J.
,
Choi
,
S.
,
Lee
,
J.
,
Park
,
I.
,
Hyeon
,
T.
, and
Kim
,
D. H.
,
2014
, “
Reverse-Micelle-Induced Porous Pressure-Sensitive Rubber for Wearable Human-Machine Interfaces
,”
Adv. Mater.
,
26
(
28
), pp.
4825
4830
. 10.1002/adma.201401364
11.
Wang
,
J.
,
Lin
,
M. F.
,
Park
,
S.
, and
Lee
,
P. S.
,
2018
, “
Deformable Conductors for Human–Machine Interface
,”
Mater. Today
,
21
(
5
), pp.
508
526
. 10.1016/j.mattod.2017.12.006
12.
Huang
,
Y.
,
Dong
,
W.
,
Zhu
,
C.
, and
Xiao
,
L.
,
2018
, “
Electromechanical Design of Self-Similar Inspired Surface Electrodes for Human-Machine Interaction
,”
Complexity
,
2018
, pp.
1
14
.10.1155/2018/3016343
13.
Kim
,
D. H.
,
Lu
,
N.
,
Ghaffari
,
R.
,
Kim
,
Y. S.
,
Lee
,
S. P.
,
Xu
,
L.
,
Wu
,
J.
,
Kim
,
R. H.
,
Song
,
J.
,
Liu
,
Z.
,
Viventi
,
J.
,
Graff
,
B. D.
,
Elolampi
,
B.
,
Mansour
,
M.
,
Slepian
,
M. J.
,
Hwang
,
S.
,
Moss
,
J. D.
,
Won
,
S. M.
,
Huang
,
Y.
,
Litt
,
B.
, and
Rogers
,
J. A.
,
2011
, “
Materials for Multifunctional Balloon Catheters with Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy
,”
Nat. Mater.
,
10
(
4
), pp.
316
323
. 10.1038/nmat2971
14.
Gao
,
Y.
,
Ota
,
H.
,
Schaler
,
E. W.
,
Chen
,
K.
,
Zhao
,
A.
,
Gao
,
W.
,
Fahad
,
H. M.
,
Leng
,
Y.
,
Zheng
,
A.
,
Xiong
,
F.
,
Zhang
,
C.
,
Tai
,
L.-C.
,
Zhao
,
P.
,
Fearing
,
R. S.
, and
Javey
,
A.
,
2017
, “
Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring
,”
Adv. Mater.
,
29
(
39
), p.
1701985
. 10.1002/adma.201701985
15.
Son
,
D.
,
Lee
,
J.
,
Qiao
,
S.
,
Ghaffari
,
R.
,
Kim
,
J.
,
Lee
,
J. E.
,
Song
,
C.
,
Kim
,
S. J.
,
Lee
,
D. J.
,
Jun
,
S. W.
,
Yang
,
S.
,
Park
,
M.
,
Shin
,
J.
,
Do
,
K.
,
Lee
,
M.
,
Kang
,
K.
,
Hwang
,
C. S.
,
Lu
,
N.
,
Hyeon
,
T.
, and
Kim
,
D. H.
,
2014
, “
Multifunctional Wearable Devices for Diagnosis and Therapy of Movement Disorders
,”
Nat. Nanotechnol.
,
9
(
5
), pp.
397
404
. 10.1038/nnano.2014.38
16.
Lin
,
S.
,
Yuk
,
H.
,
Zhang
,
T.
,
Parada
,
G. A.
,
Koo
,
H.
,
Yu
,
C.
, and
Zhao
,
X.
,
2016
, “
Stretchable Hydrogel Electronics and Devices
,”
Adv. Mater.
,
28
(
22
), pp.
4497
4505
. 10.1002/adma.201504152
17.
Hong
,
Y. J.
,
Jeong
,
H.
,
Cho
,
K. W.
,
Lu
,
N.
, and
Kim
,
D. H.
,
2019
, “
Wearable and Implantable Devices for Cardiovascular Healthcare: From Monitoring to Therapy Based on Flexible and Stretchable Electronics
,”
Adv. Funct. Mater.
,
29
(
19
), p.
1808247
. 10.1002/adfm.201808247
18.
Shi
,
X. T.
,
Xu
,
R. X.
,
Li
,
Y. H.
,
Zhang
,
Y. H.
,
Ren
,
Z. G.
,
Gu
,
J. F.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2014
, “
Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
124502
. 10.1115/1.4028977
19.
Yang
,
P. K.
,
Lin
,
L.
,
Yi
,
F.
,
Li
,
X.
,
Pradel
,
K. C.
,
Zi
,
Y.
,
Wu
,
C. I.
,
He
,
J. H.
,
Zhang
,
Y.
, and
Wang
,
Z. L.
,
2015
, “
A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring
,”
Adv. Mater.
,
27
(
25
), pp.
3817
3824
. 10.1002/adma.201500652
20.
Shi
,
C.
,
Wang
,
T.
,
Liao
,
X.
,
Qie
,
B.
,
Yang
,
P.
,
Chen
,
M.
,
Wang
,
X.
,
Srinivasan
,
A.
,
Cheng
,
Q.
,
Ye
,
Q.
,
Li
,
A. C.
,
Chen
,
X.
, and
Yang
,
Y.
,
2019
, “
Accordion-like Stretchable Li-ion Batteries with High Energy Density
,”
Energy Storage Mater.
,
17
, pp.
136
142
. 10.1016/j.ensm.2018.11.019
21.
Yan
,
C.
, and
Lee
,
P. S.
,
2014
, “
Stretchable Energy Storage and Conversion Devices
,”
Small
,
10
(
17
), pp.
3443
3460
. 10.1002/smll.201302806
22.
Li
,
Z.
,
Wang
,
Y.
, and
Xiao
,
J.
,
2015
, “
Mechanics of Curvilinear Electronics and Optoelectronics
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
171
189
. 10.1016/j.cossms.2015.01.003
23.
Choi
,
M. K.
,
Park
,
I.
,
Kim
,
D. C.
,
Joh
,
E.
,
Park
,
O. K.
,
Kim
,
J.
,
Kim
,
M.
,
Choi
,
C.
,
Yang
,
J.
,
Cho
,
K. W.
,
Hwang
,
J. H.
,
Nam
,
J. M.
,
Hyeon
,
T.
,
Kim
,
J. H.
, and
Kim
,
D. H.
,
2015
, “
Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System
,”
Adv. Funct. Mater.
,
25
(
46
), pp.
7109
7118
. 10.1002/adfm.201502956
24.
Gutruf
,
P.
,
Krishnamurthi
,
V.
,
Vázquez-Guardado
,
A.
,
Xie
,
Z.
,
Banks
,
A.
,
Su
,
C. J.
,
Xu
,
Y.
,
Haney
,
C. R.
,
Waters
,
E. A.
,
Kandela
,
I.
,
Krishnan
,
S. R.
,
Ray
,
T.
,
Leshock
,
J. P.
,
Huang
,
Y.
,
Chanda
,
D.
, and
Rogers
,
J. A.
,
2018
, “
Fully Implantable Optoelectronic Systems for Battery-Free, Multimodal Operation in Neuroscience Research
,”
Nat. Electron.
,
1
(
12
), pp.
652
660
. 10.1038/s41928-018-0175-0
25.
Zhang
,
Y.
,
Mickle
,
A. D.
,
Gutruf
,
P.
,
McIlvried
,
L. A.
,
Guo
,
H.
,
Wu
,
Y.
,
Golden
,
J. P.
,
Xue
,
Y.
,
Grajales-Reyes
,
J. G.
,
Wang
,
X.
,
Krishnan
,
S.
,
Xie
,
Y.
,
Peng
,
D.
,
Su
,
C. J.
,
Zhang
,
F.
,
Reeder
,
J. T.
,
Vogt
,
S. K.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Gereau IV
,
R. W.
,
2019
, “
Battery-free, Fully Implantable Optofluidic Cuff System for Wireless Optogenetic and Pharmacological Neuromodulation of Peripheral Nerves
,”
Sci. Adv.
,
5
(
7
), p.
eaaw5296
. 10.1126/sciadv.aaw5296
26.
Ko
,
H. C.
,
Stoykovich
,
M. P.
,
Song
,
J. Z.
,
Malyarchuk
,
V.
,
Choi
,
W. M.
,
Yu
,
C. J.
,
Geddes
III,
J. B.
,
Xiao
,
J. L.
,
Wang
,
S. D.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2008
, “
A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics
,”
Nature
,
454
(
7205
), pp.
748
753
. 10.1038/nature07113
27.
Yang
,
Y.
,
Vervust
,
T.
,
Dunphy
,
S.
,
Van Put
,
S.
,
Vandecasteele
,
B.
,
Dhaenens
,
K.
,
Degrendele
,
L.
,
Mader
,
L.
,
De Vriese
,
L.
,
Martens
,
T.
,
Kaufmann
,
M.
,
Sekitani
,
T.
, and
Vanfleteren
,
J.
,
2018
, “
3D Multifunctional Composites Based on Large-Area Stretchable Circuit with Thermoforming Technology
,”
Adv. Electron.
,
4
(
8
), p.
1800071
. 10.1002/aelm.201800071
28.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
. 10.1115/1.4034458
29.
Xie
,
Z.
,
Ji
,
B.
, and
Huo
,
Q.
,
2018
, “
Mechanics Design of Stretchable Near Field Communication Antenna with Serpentine Wires
,”
ASME. J. Appl. Mech.
,
85
(
4
), p.
045001
. 10.1115/1.4039102
30.
Zhang
,
P.
, and
Parnell
,
W. J.
,
2017
, “
Band gap Formation and Tunability in Stretchable Serpentine Interconnects
,”
ASME. J. Appl. Mech.
,
84
(
9
), p.
091007
. 10.1115/1.4037314
31.
Yan
,
Z. G.
,
Wang
,
B. L.
,
Wang
,
K. F.
, and
Zhang
,
C.
,
2019
, “
A Novel Cellular Substrate for Flexible Electronics with Negative Poisson Ratios Under Large Stretching
,”
Int. J. Mech. Sci.
,
151
, pp.
314
321
. 10.1016/j.ijmecsci.2018.11.026
32.
Zhang
,
M.
,
Liu
,
H.
,
Cao
,
P.
,
Chen
,
B.
,
Hu
,
J.
,
Chen
,
Y.
,
Pan
,
B.
,
Fan
,
J. A.
,
Li
,
R.
,
Zhang
,
L.
, and
Su
,
Y.
,
2017
, “
Strain-Limiting Substrates Based on Nonbuckling, Prestrain-Free Mechanics for Robust Stretchable Electronics
,”
ASME. J. Appl. Mech.
,
84
(
12
), p.
121010
. 10.1115/1.4038174
33.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
. 10.1126/science.1182383
34.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K. I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D.
,
Zhou
,
G.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
. 10.1126/science.1260960
35.
Chen
,
Y.
,
Zhu
,
Y.
,
Chen
,
X.
, and
Liu
,
Y.
,
2016
, “
Mechanism of the Transition From in-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041011
. 10.1115/1.4032573
36.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
,
Wang
,
J.
,
Ren
,
W.
,
Si
,
H.
,
Liu
,
F.
,
Yang
,
L.
,
Li
,
H.
,
Wang
,
J.
,
Guo
,
X.
,
Luo
,
H.
,
Wang
,
L.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
38
), pp.
11757
11764
. 10.1073/pnas.1515602112
37.
Yao
,
S.
, and
Zhu
,
Y.
,
2015
, “
Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices
,”
Adv. Mater.
,
27
(
9
), pp.
1480
1511
. 10.1002/adma.201404446
38.
Chen
,
Y.
,
Liu
,
Y.
,
Yan
,
Y.
,
Zhu
,
Y.
, and
Chen
,
X.
,
2016
, “
Helical Coil Buckling Mechanism for a Stiff Nanowire on an Elastomeric Substrate
,”
J. Mech. Phys. Solids
,
95
, pp.
25
43
. 10.1016/j.jmps.2016.05.020
39.
Yan
,
Z. G.
,
Wang
,
B. L.
, and
Wang
,
K. F.
,
2019
, “
Stretchability and Compressibility of a Novel Layout Design for Flexible Electronics Based on Bended Wrinkle Geometries
,”
Compos. Part B-Eng.
,
166
, pp.
65
73
. 10.1016/j.compositesb.2018.11.123
40.
Xu
,
F.
,
Lu
,
W.
, and
Zhu
,
Y.
,
2011
, “
Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics
,”
ACS Nano
,
5
(
1
), pp.
672
678
. 10.1021/nn103189z
41.
Wang
,
A.
,
Avila
,
R.
, and
Ma
,
Y.
,
2017
, “
Mechanics Design for Buckling of Thin Ribbons on an Elastomeric Substrate Without Material Failure
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
094501
. 10.1115/1.4037149
42.
Song
,
J.
,
Jiang
,
H.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2009
, “
Mechanics of Stretchable Inorganic Electronic Materials
,”
J. Vac. Sci. Technol., A
,
27
(
5
), pp.
1107
1125
. 10.1116/1.3168555
43.
Yan
,
Z.
,
Zhang
,
F.
,
Wang
,
J.
,
Liu
,
F.
,
Guo
,
X.
,
Nan
,
K.
,
Lin
,
Q.
,
Gao
,
M.
,
Xiao
,
D.
,
Shi
,
Y.
,
Qiu
,
Y.
,
Luan
,
H.
,
Kim
,
J. H.
,
Wang
,
Y.
,
Luo
,
H.
,
Han
,
M.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials
,”
Adv. Funct. Mater.
,
26
(
16
), pp.
2629
2639
. 10.1002/adfm.201504901
44.
Fu
,
H.
,
Nan
,
K.
,
Bai
,
W.
,
Huang
,
W.
,
Bai
,
K.
,
Lu
,
L.
,
Zhou
,
C.
,
Liu
,
Y.
,
Liu
,
F.
,
Wang
,
J.
,
Han
,
M.
,
Yan
,
Z.
,
Luan
,
H.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhao
,
J.
,
Cheng
,
X.
,
Li
,
M.
,
Lee
,
J. W.
,
Liu
,
Y.
,
Fang
,
D.
,
Li
,
X.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2018
, “
Morphable 3D Mesostructures and Microelectronic Devices by Multistable Buckling Mechanics
,”
Nat. Mater.
,
17
(
3
), pp.
268
276
. 10.1038/s41563-017-0011-3
45.
Han
,
M.
,
Wang
,
H.
,
Yang
,
Y.
,
Liang
,
C.
,
Bai
,
W.
,
Yan
,
Z.
,
Li
,
H.
,
Xue
,
Y.
,
Wang
,
X.
,
Akar
,
B.
,
Zhao
,
H.
,
Luan
,
H.
,
Lim
,
J.
,
Kandela
,
I.
,
Ameer
,
G. A.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2019
, “
Three-Dimensional Piezoelectric Polymer Microsystems for Vibrational Energy Harvesting, Robotic Interfaces and Biomedical Implants,” Nat.
Electron.
,
2
(
1
), pp.
26
35
.
46.
Li
,
S.
,
Han
,
M.
,
Rogers
,
J. A.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Wang
,
H.
,
2019
, “
Mechanics of Buckled Serpentine Structures Formed via Mechanics-Guided, Deterministic Three-Dimensional Assembly
,”
J. Mech. Phys. Solids
,
125
, pp.
736
748
. 10.1016/j.jmps.2019.01.019
47.
Ma
,
Q.
,
Cheng
,
H.
,
Jang
,
K. I.
,
Luan
,
H.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2016
, “
A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids
,
90
, pp.
179
202
. 10.1016/j.jmps.2016.02.012
48.
Chen
,
H.
,
Zhu
,
F.
,
Jang
,
K. I.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Ma
,
Y.
,
2018
, “
The Equivalent Medium of Cellular Substrate Under Large Stretching, with Applications to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
120
, pp.
199
207
. 10.1016/j.jmps.2017.11.002
49.
Zhang
,
Q.
,
Yang
,
X.
,
Li
,
P.
,
Huang
,
G.
,
Feng
,
S.
,
Shen
,
C.
,
Han
,
B.
,
Zhang
,
X.
,
Jin
,
F.
,
Xu
,
F.
, and
Lu
,
T. J.
,
2015
, “
Bioinspired Engineering of Honeycomb Structure-Using Nature to Inspire Human Innovation
,”
Prog. Mater. Sci.
,
74
, pp.
332
400
. 10.1016/j.pmatsci.2015.05.001
50.
Zhang
,
E.
,
Wang
,
Y.
,
Lv
,
T.
,
Li
,
L.
,
Cheng
,
Z.
, and
Liu
,
Y.
,
2015
, “
Bio-inspired Design of Hierarchical PDMS Microstructures with Tunable Adhesive Superhydrophobicity
,”
Nanoscale
,
7
(
14
), pp.
6151
6158
. 10.1039/C5NR00356C
51.
Wolfs
,
M.
,
Darmanin
,
T.
, and
Guittard
,
F.
,
2012
, “
Superhydrophobic Nanofiber Arrays and Flower-Like Structures of Electrodeposited Conducting Polymers
,”
Soft Matter
,
8
(
35
), pp.
9110
9114
. 10.1039/c2sm26274f
52.
Wang
,
H.
,
Ning
,
X.
,
Li
,
H.
,
Luan
,
H.
,
Xue
,
Y.
,
Yu
,
X.
,
Fan
,
Z.
,
Li
,
L.
,
Rogers
,
J. A.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2018
, “
Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling
,”
J. Mech. Phys. Solids
,
112
, pp.
187
208
. 10.1016/j.jmps.2017.12.002
53.
Li
,
H.
,
Wang
,
X.
,
Zhu
,
F.
,
Ning
,
X.
,
Wang
,
H.
,
Rogers
,
J. A.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2018
, “
Viscoelastic Characteristics of Mechanically Assembled Three-Dimensional Structures Formed by Compressive Buckling
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121002
. 10.1115/1.4041163
54.
Han
,
Z.
,
Li
,
H.
,
Xiao
,
J.
,
Song
,
H.
,
Li
,
B.
,
Cai
,
S.
,
Chen
,
Y.
,
Ma
,
Y.
, and
Feng
,
X.
,
2019
, “
Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics
,”
ACS Appl. Mater. Interfaces
,
11
(
36
), pp.
33370
33379
. 10.1021/acsami.9b12929
55.
Durham
,
J. W.
, and
Zhu
,
Y.
,
2012
, “
Fabrication of Functional Nanowire Devices on Unconventional Substrates Using Strain-Release Assembly
,”
ACS Appl. Mater. Interfaces
,
5
(
2
), pp.
256
261
. 10.1021/am302384z
56.
Liu
,
D.
,
Koric
,
S.
, and
Kontsos
,
A.
,
2019
, “
A Multiscale Homogenization Approach for Architectured Knitted Textiles
,”
ASME J. Appl. Mech.
,
86
(
11
), p.
111006
. 10.1115/1.4044014
57.
Loke
,
G.
,
Yuan
,
R.
,
Rein
,
M.
,
Khudiyev
,
T.
,
Jain
,
Y.
,
Joannopoulos
,
J.
, and
Fink
,
Y.
,
2019
, “
Structured Multimaterial Filaments for 3D Printing of Optoelectronics
,”
Nat. Commun.
,
10
(
1
), pp.
1
10
. 10.1038/s41467-019-11986-0
58.
Rich
,
S. I.
,
Wood
,
R. J.
, and
Majidi
,
C.
,
2018
, “
Untethered Soft Robotics
,”
Nat. Electron.
,
1
(
2
), pp.
102
112
. 10.1038/s41928-018-0024-1
You do not currently have access to this content.