Abstract

Bistable compliant elements offer excellent advantages in many applications ranging from high precision sensing to energy harvesting. The essential nonlinear mechanics of such elements are strongly coupled with their buckling mode, geometric parameters, and loading conditions. The force–displacement plot of bistable curved beams could contain a displacement limit point, which cannot be well modeled by the commonly used smooth cubic function and would cause operational problems due to incorrect predictions of the bistability. In this technical brief, the nonlinear bistable mechanics of a compliant curved beam with both ends fixed is analyzed based on the large deflection finite element theory. By using the multistep displacement loading method, the deformation behaviors and their transition from symmetric to asymmetric modes are numerically studied, which provides insights into the force–displacement curve and the multiple snapping pathways. Furthermore, the influences of the structure parameters on bistable mechanics are analyzed, and a quality factor for identifying the occurrence of displacement limit points is introduced for different loading conditions. Finally, a method for achieving a single smooth snapping pathway is proposed, providing a theoretical basis to the design and control of the bistable compliant structures.

References

1.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
. 10.1115/1.4000529
2.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
. 10.1115/1.4003922
3.
Zhao
,
J.
,
Jia
,
J.
,
He
,
X.
, and
Wang
,
H.
,
2008
, “
Post-Buckling and Snap-Through Behavior of Inclined Slender Beams
,”
ASME J. Appl. Mech.
,
75
(
4
), p.
041020
. 10.1115/1.2870953
4.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods. Eng.
,
50
(
12
), pp.
2683
2705
. 10.1002/nme.148
5.
Hao
,
G.
, and
Mullins
,
J.
,
2016
, “
On the Comprehensive Static Characteristic Analysis of a Translational Bistable Mechanism
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
230
(
20
), pp.
3803
3817
. 10.1177/0954406215616418
6.
Yu
,
Y. Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M. G.
,
2005
, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
760
765
. 10.1115/1.1900750
7.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
. 10.1115/1.1760776
8.
Ohsaki
,
M.
,
Katoh
,
N.
,
Kinoshita
,
T.
,
Tanigawa
,
S.
,
Avis
,
D.
, and
Streinu
,
I.
,
2009
, “
Enumeration of Optimal Pin-Jointed Bistable Compliant Mechanisms With Non-Crossing Members
,”
Struct. Multidisc. Optim.
,
37
(
6
), pp.
645
651
. 10.1007/s00158-008-0258-z
9.
Su
,
H. J.
, and
McCarthy
,
J. M.
,
2007
, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
. 10.1115/1.2757192
10.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
. 10.1016/j.mechmachtheory.2009.09.009
11.
Zhao
,
J.
,
Yang
,
Y. T.
,
Wang
,
H. X.
, and
Jia
,
J. Y.
,
2010
, “
A Novel Magnetic Actuated Bistable Acceleration Switch With Low Contact Resistance
,”
IEEE Sensors J.
,
10
(
4
), pp.
869
876
. 10.1109/JSEN.2009.2036442
12.
Freudenreich
,
M.
,
Mescheder
,
U.
, and
Somogyi
,
G.
,
2004
, “
Simulation and Realization of a Novel Micromechanical bi-Stable Switch
,”
Sens. Actuators, A
,
114
(
2–3
), pp.
451
459
. 10.1016/j.sna.2004.01.034
13.
Gerson
,
Y.
,
Schreiber
,
D.
,
Grau
,
H.
, and
Krylov
,
S.
,
2014
, “
Meso Scale MEMS Inertial Switch Fabricated Using an Electroplated Metal-on-Insulator Process
,”
J. Micromech. Microeng.
,
24
(
2
), p.
025008
. 10.1088/0960-1317/24/2/025008
14.
Qiu
,
J.
,
Lang
,
J. H.
,
Slocum
,
A. H.
, and
Weber
,
A. C.
,
2005
, “
A Bulk-Micromachined Bistable Relay With U-Shaped Thermal Actuators
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
1099
1109
. 10.1109/JMEMS.2005.856676
15.
Miao
,
X. D.
,
Dai
,
X. H.
,
Wang
,
P. H.
,
Ding
,
G. F.
, and
Zhao
,
X. L.
,
2011
, “
Design, Fabrication and Characterization of a Bistable Electromagnetic Microrelay With Large Displacement
,”
Microelectron. J.
,
42
(
8
), pp.
992
998
. 10.1016/j.mejo.2011.05.004
16.
Wu
,
Y. B.
,
Ding
,
G. F.
,
Zhang
,
C. C.
,
Wang
,
J. A.
,
Mao
,
S. P.
, and
Wang
,
H.
,
2010
, “
Design and Implementation of a Bistable Microcantilever Actuator for Magnetostatic Latching Relay
,”
Microelectron. J.
,
41
(
6
), pp.
325
330
. 10.1016/j.mejo.2010.03.006
17.
Chen
,
T.
, and
Shea
,
K.
,
2018
, “
An Autonomous Programmable Actuator and Shape Reconfigurable Structures Using Bistability and Shape Memory Polymers
,”
3D Print. Addit. Manuf.
,
5
(
2
), pp.
91
101
. 10.1089/3dp.2017.0118
18.
Chouinard
,
P.
, and
Plante
,
J. S.
,
2012
, “
Bistable Antagonistic Dielectric Elastomer Actuators for Binary Robotics and Mechatronics
,”
IEEE/ASME Trans. Mechatron.
,
17
(
5
), pp.
857
865
. 10.1109/TMECH.2011.2135862
19.
Zaidi
,
S.
,
Lamarque
,
F.
,
Favergeon
,
J.
,
Carton
,
O.
, and
Prelle
,
C.
,
2011
, “
Wavelength-Selective Shape Memory Alloy for Wireless Microactuation of a Bistable Curved Beam
,”
IEEE Trans. Ind. Electron.
,
58
(
12
), pp.
5288
5295
. 10.1109/TIE.2010.2046609
20.
Armanini
,
C.
,
Dal Corso
,
F.
,
Misseroni
,
D.
, and
Bigoni
,
D.
,
2017
, “
From the Elastica Compass to the Elastica Catapult: An Essay on the Mechanics of Soft Robot Arm
,”
Proc. Math. Phys. Eng. Sci.
,
473
(
2198
), p.
20160870
. 10.1098/rspa.2016.0870
21.
Sneller
,
A. J.
,
Cette
,
P.
, and
Mann
,
B. P.
,
2011
, “
Experimental Investigation of a Post-Buckled Piezoelectric Beam With an Attached Central Mass Used to Harvest Energy
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
225
(
I4
), pp.
497
509
. 10.1177/0959651811401954
22.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
. 10.1088/0964-1726/22/2/023001
23.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2008
, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
,
18
(
4
), p.
045005
. 10.1088/0960-1317/18/4/045005
24.
Roodenburg
,
D.
,
Spronck
,
J. W.
,
van der Zant
,
H. S. J.
, and
Venstra
,
W. J.
,
2009
, “
Buckling Beam Micromechanical Memory With On-Chip Readout
,”
Appl. Phys. Lett.
,
94
(
18
), p.
183501
. 10.1063/1.3129195
25.
Hansen
,
B. J.
,
Carron
,
C. J.
,
Jensen
,
B. D.
,
Hawkins
,
A. R.
, and
Schultz
,
S. M.
,
2007
, “
Plastic Latching Accelerometer Based on Bistable Compliant Mechanisms
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1967
1972
. 10.1088/0964-1726/16/5/055
26.
Zhao
,
J.
,
Jia
,
J.
,
Wang
,
H.
, and
Li
,
W.
,
2007
, “
A Novel Threshold Accelerometer With Postbuckling Structures for Airbag Restraint Systems
,”
IEEE Sensors J.
,
7
(
7–8
), pp.
1102
1109
. 10.1109/JSEN.2007.897936
27.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control,” Energy Harvesting and Sensing
,
John Wiley & Sons Ltd.
,
Hoboken, NJ
.
28.
Chen
,
J. S.
,
Ro
,
W. C.
, and
Lin
,
J. S.
,
2009
, “
Exact Static and Dynamic Critical Loads of a Sinusoidal Arch Under a Point Force at the Midpoint
,”
Int. J. Non Linear Mech.
,
44
(
1
), pp.
66
70
. 10.1016/j.ijnonlinmec.2008.08.006
29.
Chen
,
J. S.
, and
Ro
,
W. C.
,
2010
, “
Deformations and Stability of an Elastica Subjected to an Off-Axis Point Constraint
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
031006
. 10.1115/1.4000426
30.
Chen
,
J. S.
, and
Hung
,
S. Y.
,
2011
, “
Snapping of an Elastica Under Various Loading Mechanisms
,”
Eur. J. Mech. A. Solids
,
30
(
4
), pp.
525
531
. 10.1016/j.euromechsol.2011.03.006
31.
Cazzolli
,
A.
, and
Dal Corso
,
F.
,
2019
, “
Snapping of Elastic Strips With Controlled Ends
,”
Int. J. Solids Struct.
,
162
(
4
), pp.
285
303
. 10.1016/j.ijsolstr.2018.12.005
32.
Patrício
,
P.
,
Adda-Bedia
,
M.
, and
Ben Amar
,
M.
,
1998
, “
An Elastica Problem: Instabilities of an Elastic Arch
,”
Physica D
,
124
(
1–3
), pp.
285
295
. 10.1016/S0167-2789(98)00203-6
33.
Chen
,
G. M.
, and
Ma
,
F. L.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
. 10.1115/1.4029024
34.
Han
,
Q.
,
Jin
,
K.
,
Chen
,
G.
, and
Shao
,
X.
,
2017
, “
A Novel Fully Compliant Tensural-Compresural Bistable Mechanism
,”
Sens. Actuators, A
,
268
(
16
), pp.
72
82
. 10.1016/j.sna.2017.10.012
35.
Magnusson
,
A.
,
Ristinmaa
,
M.
, and
Ljung
,
C.
,
2001
, “
Behaviour of the Extensible Elastica Solution
,”
Int. J. Solids Struct.
,
38
(
46–47
), pp.
8441
8457
. 10.1016/S0020-7683(01)00089-0
36.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators, A
,
69
(
3
), pp.
212
216
. 10.1016/S0924-4247(98)00097-1
37.
Camescasse
,
B.
,
Fernandes
,
A.
, and
Pouget
,
J.
,
2013
, “
Bistable Buckled Beam: Elastica Modeling and Analysis of Static Actuation
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2881
2893
. 10.1016/j.ijsolstr.2013.05.005
38.
Camescasse
,
B.
,
Fernandes
,
A.
, and
Pouget
,
J.
,
2014
, “
Bistable Buckled Beam and Force Actuation: Experimental Validations
,”
Int. J. Solids Struct.
,
51
(
9
), pp.
1750
1757
. 10.1016/j.ijsolstr.2014.01.017
39.
Huang
,
Y.
,
Zhao
,
J.
, and
Liu
,
S.
,
2016
, “
Design Optimization of Segment-Reinforced Bistable Mechanisms Exhibiting Adjustable Snapping Behavior
,”
Sens. Actuators, A
,
252
(
16
), pp.
7
15
. 10.1016/j.sna.2016.10.014
40.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101001
. 10.1115/1.3179003
41.
Pham
,
H. T.
, and
Wang
,
D. A.
,
2011
, “
A Quadristable Compliant Mechanism With a Bistable Structure Embedded in a Surrounding Beam Structure
,”
Sens. Actuators, A
,
167
(
2
), pp.
438
448
. 10.1016/j.sna.2011.02.044
42.
Danso
,
L. A.
, and
Karpov
,
E. G.
,
2017
, “
Cusp Singularity-Based Bistability Criterion for Geometrically Nonlinear Structures
,”
Extreme Mech. Lett.
,
13
(
4
), pp.
135
140
. 10.1016/j.eml.2017.01.001
43.
Virgin
,
L. N.
,
Wiebe
,
R.
,
Spottswood
,
S. M.
, and
Eason
,
T. G.
,
2014
, “
Sensitivity in the Structural Behavior of Shallow Arches
,”
Int. J. Non Linear Mech.
,
58
, pp.
212
221
. 10.1016/j.ijnonlinmec.2013.10.003
44.
Cox
,
B. S.
,
Groh
,
R. M. J.
,
Avitabile
,
D.
, and
Pirrera
,
A.
,
2018
, “
Exploring the Design Space of Nonlinear Shallow Arches With Generalised Path-Following
,”
Finite Elem. Anal. Des.
,
143
(
4
), pp.
1
10
. 10.1016/j.finel.2018.01.004
45.
Pi
,
Y. L.
,
Bradford
,
M. A.
, and
Guo
,
Y. L.
,
2016
, “
Revisiting Nonlinear In-Plane Elastic Buckling and Postbuckling Analysis of Shallow Circular Arches Under a Central Concentrated Load
,”
J. Eng. Mech.
,
142
(
8
), pp.
1
10
. 10.1061/(asce)em.1943-7889.0001098
46.
Arena
,
G.
,
Groh
,
R. M. J.
,
Brinkmeyer
,
A.
,
Theunissen
,
R.
,
Weaver
,
P. M.
, and
Pirrera
,
A.
,
2017
, “
Adaptive Compliant Structures for Flow Regulation
,”
Proc. Math. Phys. Eng. Sci.
,
473
(
2204
), p.
20170334
. 10.1098/rspa.2017.0334
47.
Eriksson
,
A.
,
1997
, “
Equilibrium Subsets for Multi-Parametric Structural Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
140
(
3–4
), pp.
305
327
. 10.1016/S0045-7825(96)01096-1
48.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
A Bifurcation-Based Coupled Linear-Bistable System for Microscale Mass Sensing
,”
J. Sound. Vib.
,
333
(
8
), pp.
2241
2252
. 10.1016/j.jsv.2013.12.017
49.
Romeo
,
F.
,
Manevitch
,
L. I.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
,
2015
, “
Transient and Chaotic Low-Energy Transfers in a System With Bistable Nonlinearity
,”
Chaos
,
25
(
5
), p.
053109
. 10.1063/1.4921193
50.
Manevitch
,
L. I.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
,
2014
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
. 10.1115/1.4025150
51.
Mattei
,
P. O.
,
Poncot
,
R.
,
Pachebat
,
M.
, and
Côte
,
R.
,
2016
, “
Nonlinear Targeted Energy Transfer of Two Coupled Cantilever Beams Coupled to a Bistable Light Attachment
,”
J. Sound Vib.
,
373
(
14
), pp.
29
51
. 10.1016/j.jsv.2016.03.008
52.
Groh
,
R. M. J.
,
Avitabile
,
D.
, and
Pirrera
,
A.
,
2018
, “
Generalised Path-Following for Well-Behaved Nonlinear Structures
,”
Comput. Meth. Appl. Mech. Eng.
,
331
(
4
), pp.
394
426
. 10.1016/j.cma.2017.12.001
53.
Bathe
,
K. J.
,
1996
,
Finite-Element Procedures
,
Prentice Hall, Inc.
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.