Abstract

Fiber networks are the primary structural components of many biological structures, including the cell cytoskeleton and the extracellular matrix. These materials exhibit global nonlinearities, such as stiffening in extension and shear, during which the fibers bend and align with the direction of applied loading. Precise details of deformations at the scale of the fibers during strain stiffening are still lacking, however, as prior work has studied fiber alignment primarily from a qualitative perspective, which leaves incomplete the understanding of how the local microstructural evolution leads to the global mechanical behavior. To fill this gap, we studied how axial forces are transmitted inside the fiber network along paths called force chains, which continuously evolve during the course of deformation. We performed numerical simulations on two-dimensional networks of random fibers under uniaxial extension and shear, modeling the fibers using beam elements in finite element software. To quantify the force chains, we identified all chains of connected fibers for which the axial force was larger than a preset threshold and computed the total length of all such chains. To study the evolution of force chains during loading, we computed the derivative of the total length of all force chains with respect to the applied engineering strain. Results showed that the highest rate of evolution of force chains coincided with the global critical strain for strain stiffening of the fiber network. Therefore, force chains are an important factor connecting understanding of the local kinematics and force transmission to the macroscale stiffness of the fiber network.

References

1.
Janmey
,
P. A.
,
1998
, “
The Cytoskeleton and Cell Signaling: Component Localization and Mechanical Coupling
,”
Physiol. Rev.
,
78
(
3
), pp.
763
781
.
2.
Bausch
,
A.
, and
Kroy
,
K.
,
2006
, “
A Bottom-Up Approach to Cell Mechanics
,”
Nat. Phys.
,
2
(
4
), pp.
231
238
.
3.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
,
2007
,
Molecular Biology of the Cell
,
Taylor & Francis Group
,
New York
.
4.
Laurens
,
N.
,
Koolwijk
,
P. d.
, and
De Maat
,
M.
,
2006
, “
Fibrin Structure and Wound Healing
,”
J. Thromb. Haemostat.
,
4
(
5
), pp.
932
939
.
5.
Muiznieks
,
L. D.
, and
Keeley
,
F. W.
,
2013
, “
Molecular Assembly and Mechanical Properties of the Extracellular Matrix: A Fibrous Protein Perspective
,”
BBA-Mol. Basis Dis.
,
1832
(
7
), pp.
866
875
.
6.
Kotlarchyk
,
M. A.
,
Shreim
,
S. G.
,
Alvarez-Elizondo
,
M. B.
,
Estrada
,
L. C.
,
Singh
,
R.
,
Valdevit
,
L.
,
Kniazeva
,
E.
,
Gratton
,
E.
,
Putnam
,
A. J.
, and
Botvinick
,
E. L.
,
2011
, “
Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel
,”
PLoS One
,
6
(
5
), p.
e20201
.
7.
Jones
,
C. A.
,
Cibula
,
M.
,
Feng
,
J.
,
Krnacik
,
E. A.
,
McIntyre
,
D. H.
,
Levine
,
H.
, and
Sun
,
B.
,
2015
, “
Micromechanics of Cellularized Biopolymer Networks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
37
), pp.
E5117
E5122
.
8.
Shahsavari
,
A.
, and
Picu
,
R.
,
2013
, “
Size Effect on Mechanical Behavior of Random Fiber Networks
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3332
3338
.
9.
Proestaki
,
M.
,
Ogren
,
A.
,
Burkel
,
B.
, and
Notbohm
,
J.
,
2019
, “
Modulus of Fibrous Collagen at the Length Scale of a Cell
,”
Exp. Mech.
,
59
(
9
), pp.
1323
1334
.
10.
DiDonna
,
B.
, and
Lubensky
,
T.
,
2005
, “
Nonaffine Correlations in Random Elastic Media
,”
Phys. Rev. E
,
72
(
6
), p.
066619
.
11.
Head
,
D.
,
Levine
,
A.
, and
MacKintosh
,
F.
,
2003
, “
Distinct Regimes of Elastic Response and Deformation Modes of Cross-Linked Cytoskeletal and Semiflexible Polymer Networks
,”
Phys. Rev. E
,
68
(
6
), p.
061907
.
12.
Head
,
D.
,
Levine
,
A.
, and
MacKintosh
,
F.
,
2005
, “
Mechanical Response of Semiflexible Networks to Localized Perturbations
,”
Phys. Rev. E
,
72
(
6
), p.
061914
.
13.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2006
, “
Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
259
270
.
14.
Hatami-Marbini
,
H.
, and
Picu
,
R.
,
2008
, “
Scaling of Nonaffine Deformation in Random Semiflexible Fiber Networks
,”
Phys. Rev. E
,
77
(
6
), p.
062103
.
15.
Liu
,
J.
,
Koenderink
,
G.
,
Kasza
,
K.
,
MacKintosh
,
F.
, and
Weitz
,
D.
,
2007
, “
Visualizing the Strain Field in Semiflexible Polymer Networks: Strain Fluctuations and Nonlinear Rheology of F-Actin Gels
,”
Phys. Rev. Lett.
,
98
(
19
), p.
198304
.
16.
Wen
,
Q.
,
Basu
,
A.
,
Winer
,
J. P.
,
Yodh
,
A.
, and
Janmey
,
P. A.
,
2007
, “
Local and Global Deformations in a Strain-Stiffening Fibrin Gel
,”
New J. Phys.
,
9
(
11
), p.
428
.
17.
Grimmer
,
P.
, and
Notbohm
,
J.
,
2018
, “
Displacement Propagation in Fibrous Networks Due to Local Contraction
,”
ASME J. Biomech. Eng.
,
140
(
4
), p.
041011
.
18.
Burkel
,
B.
,
Proestaki
,
M.
,
Tyznik
,
S.
, and
Notbohm
,
J.
,
2018
, “
Heterogeneity and Nonaffinity of Cell-Induced Matrix Displacements
,”
Phys. Rev. E
,
98
(
5
), p.
052410
.
19.
Licup
,
A. J.
,
Münster
,
S.
,
Sharma
,
A.
,
Sheinman
,
M.
,
Jawerth
,
L. M.
,
Fabry
,
B.
,
Weitz
,
D. A.
, and
MacKintosh
,
F. C.
,
2015
, “
Stress Controls the Mechanics of Collagen Networks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
31
), pp.
9573
9578
.
20.
Vahabi
,
M.
,
Sharma
,
A.
,
Licup
,
A. J.
,
Van Oosten
,
A. S.
,
Galie
,
P. A.
,
Janmey
,
P. A.
, and
MacKintosh
,
F. C.
,
2016
, “
Elasticity of Fibrous Networks Under Uniaxial Prestress
,”
Soft Matter
,
12
(
22
), pp.
5050
5060
.
21.
Picu
,
R.
,
Deogekar
,
S.
, and
Islam
,
M.
,
2018
, “
Poisson’s Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
021002
.
22.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2002
, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
214
222
.
23.
Janmey
,
P. A.
,
McCormick
,
M. E.
,
Rammensee
,
S.
,
Leight
,
J. L.
,
Georges
,
P. C.
, and
MacKintosh
,
F. C.
,
2007
, “
Negative Normal Stress in Semiflexible Biopolymer Gels
,”
Nat. Mater.
,
6
(
1
), pp.
48
51
.
24.
Brown
,
A. E.
,
Litvinov
,
R. I.
,
Discher
,
D. E.
,
Purohit
,
P. K.
, and
Weisel
,
J. W.
,
2009
, “
Multiscale Mechanics of Fibrin Polymer: Gel Stretching With Protein Unfolding and Loss of Water
,”
Science
,
325
(
5941
), pp.
741
744
.
25.
Vader
,
D.
,
Kabla
,
A.
,
Weitz
,
D.
, and
Mahadevan
,
L.
,
2009
, “
Strain-Induced Alignment in Collagen Gels
,”
PLoS One
,
4
(
6
), p.
e5902
.
26.
Münster
,
S.
,
Jawerth
,
L. M.
,
Leslie
,
B. A.
,
Weitz
,
J. I.
,
Fabry
,
B.
, and
Weitz
,
D. A.
,
2013
, “
Strain History Dependence of the Nonlinear Stress Response of Fibrin and Collagen Networks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
30
), pp.
12197
12202
.
27.
Kim
,
O. V.
,
Litvinov
,
R. I.
,
Weisel
,
J. W.
, and
Alber
,
M. S.
,
2014
, “
Structural Basis for the Nonlinear Mechanics of Fibrin Networks Under Compression
,”
Biomaterials
,
35
(
25
), pp.
6739
6749
.
28.
Sharma
,
A.
,
Licup
,
A.
,
Rens
,
R.
,
Vahabi
,
M.
,
Jansen
,
K.
,
Koenderink
,
G.
, and
MacKintosh
,
F.
,
2016
, “
Strain-Driven Criticality Underlies Nonlinear Mechanics of Fibrous Networks
,”
Phys. Rev. E
,
94
(
4
), p.
042407
.
29.
Heussinger
,
C.
, and
Frey
,
E.
,
2007
, “
Force Distributions and Force Chains in Random Stiff Fiber Networks
,”
Eur. Phys. J. E
,
24
(
1
), pp.
47
53
.
30.
Ronceray
,
P.
,
Broedersz
,
C. P.
, and
Lenz
,
M.
,
2016
, “
Fiber Networks Amplify Active Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
11
), pp.
2827
2832
.
31.
Liang
,
L.
,
Jones
,
C.
,
Chen
,
S.
,
Sun
,
B.
, and
Jiao
,
Y.
,
2016
, “
Heterogeneous Force Network in 3D Cellularized Collagen Networks
,”
Phys. Biol.
,
13
(
6
), p.
066001
.
32.
Mann
,
A.
,
Sopher
,
R. S.
,
Goren
,
S.
,
Shelah
,
O.
,
Tchaicheeyan
,
O.
, and
Lesman
,
A.
,
2019
, “
Force Chains in Cell–Cell Mechanical Communication
,”
J. R. Soc Interface
,
16
(
159
), p.
20190348
.
33.
Ruiz-Franco
,
J.
, and
van Der Gucht
,
J.
,
2022
, “
Force Transmission in Disordered Fibre Networks
,”
Front. Cell Dev. Biol.
,
10
, p.
931776
.
34.
Majmudar
,
T. S.
, and
Behringer
,
R. P.
,
2005
, “
Contact Force Measurements and Stress-Induced Anisotropy in Granular Materials
,”
Nature
,
435
(
7045
), pp.
1079
1082
.
35.
Duran
,
J.
,
1997
,
Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials
,
Eyrolles
,
France
.
36.
Cates
,
M.
,
Wittmer
,
J.
,
Bouchaud
,
J.-P.
, and
Claudin
,
P.
,
1998
, “
Jamming, Force Chains, and Fragile Matter
,”
Phys. Rev. Lett.
,
81
(
9
), p.
1841
.
37.
Blair
,
D. L.
,
Mueggenburg
,
N. W.
,
Marshall
,
A. H.
,
Jaeger
,
H. M.
, and
Nagel
,
S. R.
,
2001
, “
Force Distributions in Three-Dimensional Granular Assemblies: Effects of Packing Order and Interparticle Friction
,”
Phys. Rev. E
,
63
(
4
), p.
041304
.
38.
Rosakis
,
P.
,
Notbohm
,
J.
, and
Ravichandran
,
G.
,
2015
, “
A Model for Compression-Weakening Materials and the Elastic Fields Due to Contractile Cells
,”
J. Mech. Phys. Solids
,
85
, pp.
16
32
.
39.
Lindström
,
S. B.
,
Vader
,
D. A.
,
Kulachenko
,
A.
, and
Weitz
,
D. A.
,
2010
, “
Biopolymer Network Geometries: Characterization, Regeneration, and Elastic Properties
,”
Phys. Rev. E
,
82
(
5
), p.
051905
.
40.
Arzash
,
S.
,
Shivers
,
J. L.
,
Licup
,
A. J.
,
Sharma
,
A.
, and
MacKintosh
,
F. C.
,
2019
, “
Stress-Stabilized Subisostatic Fiber Networks in a Ropelike Limit
,”
Phys. Rev. E
,
99
(
4
), p.
042412
.
41.
Maxwell
,
J. C.
,
1864
, “
L. on the Calculation of the Equilibrium and Stiffness of Frames
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
27
(
182
), pp.
294
299
.
42.
Lake
,
S. P.
,
Hadi
,
M. F.
,
Lai
,
V. K.
, and
Barocas
,
V. H.
,
2012
, “
Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison With Collagen-Agarose Co-Gels
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2111
2121
.
43.
Nachtrab
,
S.
,
Kapfer
,
S. C.
,
Arns
,
C. H.
,
Madadi
,
M.
,
Mecke
,
K.
, and
Schröder-Turk
,
G. E.
,
2011
, “
Morphology and Linear-Elastic Moduli of Random Network Solids
,”
Adv. Mater.
,
23
(
22–23
), pp.
2633
2637
.
44.
Heussinger
,
C.
, and
Frey
,
E.
,
2006
, “
Stiff Polymers, Foams, and Fiber Networks
,”
Phys. Rev. Lett.
,
96
(
1
), p.
017802
.
45.
Kumar
,
S.
, and
Kurtz
,
S. K.
,
1993
, “
Properties of a Two-Dimensional Poisson-Voronoi Tesselation: A Monte-Carlo Study
,”
Mater. Charact.
,
31
(
1
), pp.
55
68
.
46.
Cavalcante
,
F. S.
,
Ito
,
S.
,
Brewer
,
K.
,
Sakai
,
H.
,
Alencar
,
A. M.
,
Almeida
,
M. P.
,
Andrade Jr.
,
J. S.
,
Majumdar
,
A.
,
Ingenito
,
E. P.
, and
Suki
,
B.
,
2005
, “
Mechanical Interactions Between Collagen and Proteoglycans: Implications for the Stability of Lung Tissue
,”
J. Appl. Physiol.
,
98
(
2
), pp.
672
679
.
47.
Knudsen
,
L.
, and
Ochs
,
M.
,
2018
, “
The Micromechanics of Lung Alveoli: Structure and Function of Surfactant and Tissue Components
,”
Histochem. Cell Biol.
,
150
(
6
), pp.
661
676
.
48.
Hatami-Marbini
,
H.
, and
Rohanifar
,
M.
,
2021
, “
Nonlinear Mechanical Properties of Prestressed Branched Fibrous Networks
,”
Biophys. J.
,
120
(
3
), pp.
527
538
.
49.
Picu
,
R.
,
2011
, “
Mechanics of Random Fiber Networks—A Review
,”
Soft Matter
,
7
(
15
), pp.
6768
6785
.
50.
Shahsavari
,
A.
, and
Picu
,
R.
,
2012
, “
Model Selection for Athermal Cross-Linked Fiber Networks
,”
Phys. Rev. E
,
86
(
1
), p.
011923
.
51.
Tyznik
,
S.
, and
Notbohm
,
J.
,
2019
, “
Length Scale Dependent Elasticity in Random Three-Dimensional Fiber Networks
,”
Mech. Mater.
,
138
, p.
103155
.
52.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F.
,
2003
, “
Deformation of Cross-Linked Semiflexible Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108102
.
53.
Wilhelm
,
J.
, and
Frey
,
E.
,
2003
, “
Elasticity of Stiff Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108103
.
54.
Feng
,
J.
,
Levine
,
H.
,
Mao
,
X.
, and
Sander
,
L. M.
,
2015
, “
Alignment and Nonlinear Elasticity in Biopolymer Gels
,”
Phys. Rev. E
,
91
(
4
), p.
042710
.
55.
Van Oosten
,
A. S.
,
Vahabi
,
M.
,
Licup
,
A. J.
,
Sharma
,
A.
,
Galie
,
P. A.
,
MacKintosh
,
F. C.
, and
Janmey
,
P. A.
,
2016
, “
Uncoupling Shear and Uniaxial Elastic Moduli of Semiflexible Biopolymer Networks: Compression-Softening and Stretch-Stiffening
,”
Sci. Rep.
,
6
, p.
19270
.
56.
Proestaki
,
M.
,
Burkel
,
B.
,
Galles
,
E. E.
,
Ponik
,
S. M.
, and
Notbohm
,
J.
,
2021
, “
Effect of Matrix Heterogeneity on Cell Mechanosensing
,”
Soft Matter
,
17
, pp.
10263
10273
.
57.
Sarkar
,
M.
, and
Notbohm
,
J.
,
2022
, “
Quantification of Errors in Applying DIC to Fiber Networks Imaged by Confocal Microscopy
,”
Exp. Mech.
,
62
(
7
), pp.
1175
1189
.
58.
Natário
,
P.
,
Silvestre
,
N.
, and
Camotim
,
D.
,
2014
, “
Web Crippling Failure Using Quasi-Static FE Models
,”
Thin Wall Struct.
,
84
, pp.
34
49
.
59.
Islam
,
M.
, and
Picu
,
R.
,
2018
, “
Effect of Network Architecture on the Mechanical Behavior of Random Fiber Networks
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081011
.
60.
Peters
,
J.
,
Muthuswamy
,
M.
,
Wibowo
,
J.
, and
Tordesillas
,
A.
,
2005
, “
Characterization of Force Chains in Granular Material
,”
Phys. Rev. E
,
72
(
4
), p.
041307
.
61.
Licup
,
A. J.
,
Sharma
,
A.
, and
MacKintosh
,
F. C.
,
2016
, “
Elastic Regimes of Subisostatic Athermal Fiber Networks
,”
Phys. Rev. E
,
93
(
1
), p.
012407
.
62.
Merson
,
J.
, and
Picu
,
R.
,
2020
, “
Size Effects in Random Fiber Networks Controlled by the Use of Generalized Boundary Conditions
,”
Int. J. Solids Struct.
,
206
, pp.
314
321
.
63.
Jen
,
C. J.
, and
McIntire
,
L. V.
,
1982
, “
The Structural Properties and Contractile Force of a Clot
,”
Cell Motil. Cytoskeleton
,
2
(
5
), pp.
445
455
.
64.
Taylor
,
C. A.
, and
Humphrey
,
J.
,
2009
, “
Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics
,”
Comput. Methods Appl. Mech.
,
198
(
45–46
), pp.
3514
3523
.
65.
Ingber
,
D. E.
,
2006
, “
Cellular Mechanotransduction: Putting All the Pieces Together Again
,”
FASEB J.
,
20
(
7
), pp.
811
827
.
66.
Destrade
,
M.
,
Liu
,
Y.
,
Murphy
,
J. G.
, and
Kassab
,
G. S.
,
2012
, “
Uniform Transmural Strain in Pre-Stressed Arteries Occurs at Physiological Pressure
,”
J. Theor. Biol.
,
303
, pp.
93
97
.
67.
Luo
,
J.
,
Li
,
S.
,
Xu
,
J.
,
Chai
,
M.
,
Gao
,
L.
,
Yang
,
C.
, and
Shi
,
X.
,
2021
, “
Biomimetic Strain-Stiffening Hydrogel With Crimped Structure
,”
Adv. Funct. Mater.
,
31
(
43
), p.
2104139
.
68.
Chen
,
W.
,
Kumari
,
J.
,
Yuan
,
H.
,
Yang
,
F.
, and
Kouwer
,
P. H.
,
2022
, “
Towards Tissue-Like Material Properties: Inducing In Situ Adaptive Behavior in Fibrous Hydrogels
,”
Adv. Mater.
,
34
(
37
), p.
e2202057
.
69.
Islam
,
M.
, and
Picu
,
R.
,
2019
, “
Random Fiber Networks With Inclusions: The Mechanism of Reinforcement
,”
Phys. Rev. E
,
99
(
6
), p.
063001
.
70.
Ban
,
E.
,
Wang
,
H.
,
Franklin
,
J. M.
,
Liphardt
,
J. T.
,
Janmey
,
P. A.
, and
Shenoy
,
V. B.
,
2019
, “
Strong Triaxial Coupling and Anomalous Poisson Effect in Collagen Networks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
14
), pp.
6790
6799
.
You do not currently have access to this content.