Abstract

Lattice composites show excellent mechanical and acoustic properties. Compared with traditional man-made lattice composites, natural (or living) lattice composites exhibit the ability to spontaneously increase their stiffness as time increases, i.e., self-enhancement. With this paper, we study the mechanism of the self-enhancement behavior of living lattice composites. We first immerse a polymeric lattice in an oversaturated CaCO3 solution to simulate the self-enhancement behavior of living lattice composites. We then propose a modeling framework to quantitatively describe the evolution of the morphology and effective stiffness of the growing composites, including a phase field model simulation, a crystal growth prediction, and a modified lattice mechanics theory. We validate the modeling work through comparison among the theoretical prediction, experimental observation, and finite element simulation. We also study the effects of the cross sections of polymeric beams, initial concentration of the solution, and architecture type on the self-enhancement behavior of the composites. This paradigm is expected to open promising avenues for the design and fabrication of synthetic living lattice composites.

References

1.
Noor
,
A. K.
,
1988
, “
Continuum Modeling for Repetitive Lattice Structures
,”
ASME Appl. Mech. Rev.
,
41
(
7
), pp.
285
296
.
2.
Vasiliev
,
V. V.
,
Barynin
,
V. A.
, and
Rasin
,
A. F.
,
2001
, “
Anisogrid Lattice Structures–Survey of Development and Application
,”
Compos. Struct.
,
54
(
2–3
), pp.
361
370
.
3.
Kossevich
,
A. M.
,
1999
,
The Crystal Lattice: Phonons, Solitons, Dislocations
,
Wiley-VCH
,
Berlin
.
4.
Trubin
,
A.
,
2015
,
Lattices of Dielectric Resonators
, Vol.
53
,
Springer
,
New York
.
5.
Fan
,
H. L.
,
Yang
,
W.
,
Wang
,
B.
,
Yan
,
Y.
,
Fu
,
Q.
,
Fang
,
D. N.
, and
Zhuang
,
Z.
,
2006
, “
Design and Manufacturing of a Composite Lattice Structure Reinforced by Continuous Carbon Fibers
,”
Tsinghua Sci. Technol.
,
11
(
5
), pp.
515
522
.
6.
Xiong
,
J.
,
Ma
,
L.
,
Wu
,
L.
,
Wang
,
B.
, and
Vaziri
,
A.
,
2010
, “
Fabrication and Crushing Behavior of Low Density Carbon Fiber Composite Pyramidal Truss Structures
,”
Compos. Struct.
,
92
(
11
), pp.
2695
2702
.
7.
Vasiliev
,
V. V.
,
Barynin
,
V. A.
, and
Razin
,
A. F.
,
2012
, “
Anisogrid Composite Lattice Structures–Development and Aerospace Applications
,”
Compos. Struct.
,
94
(
3
), pp.
1117
1127
.
8.
George
,
T.
,
2014
, “
Carbon Fiber Composite Cellular Structures
,”
Dissertation
,
University of Virginia
,
Charlottesville, VA
.
9.
Zhang
,
Y.
,
Ha
,
S.
,
Sharp
,
K.
,
Guest
,
J. K.
,
Weihs
,
T. P.
, and
Hemker
,
K. J.
,
2015
, “
Fabrication and Mechanical Characterization of 3D Woven Cu Lattice Materials
,”
Mater. Des.
,
85
, pp.
743
751
.
10.
Jiang
,
S.
,
Sun
,
F.
,
Zhang
,
X.
, and
Fan
,
H.
,
2017
, “
Interlocking Orthogrid: an Efficient Way to Construct Lightweight Lattice-Core Sandwich Composite Structure
,”
Compos. Struct.
,
176
, pp.
55
71
.
11.
Xu
,
B.
,
Yin
,
S.
,
Wang
,
Y.
,
Li
,
H.
,
Zhang
,
B.
, and
Ritchie
,
R. O.
,
2017
, “
Long-Fiber Reinforced Thermoplastic Composite Lattice Structures: Fabrication and Compressive Properties
,”
Compos. Part A
,
97
, pp.
41
50
.
12.
Fan
,
H. L.
,
Zeng
,
T.
,
Fang
,
D. N.
, and
Yang
,
W.
,
2010
, “
Mechanics of Advanced Fiber Reinforced Lattice Composites
,”
Acta Mech. Sin.
,
26
(
6
), pp.
825
835
.
13.
Maconachie
,
T.
,
Leary
,
M.
,
Lozanovski
,
B.
,
Zhang
,
X.
,
Qian
,
M.
,
Faruque
,
O.
, and
Brandt
,
M.
,
2019
, “
SLM Lattice Structures: Properties, Performance, Applications and Challenges
,”
Mater. Des.
,
183
,
108137
.
14.
Li
,
B.
,
Li
,
Z.
,
Zhou
,
J.
,
Ye
,
L.
, and
Li
,
E.
,
2015
, “
Damage Localization in Composite Lattice Truss Core Sandwich Structures Based on Vibration Characteristics
,”
Compos. Struct.
,
126
, pp.
34
51
.
15.
Voyiadjis
,
G. Z.
,
2015
,
Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures
,
Springer
,
New York
.
16.
Gibson
,
L. J.
,
Ashby
,
M. F.
, and
Harley
,
B. A.
,
2010
,
Cellular Materials in Nature and Medicine
,
Cambridge University Press
,
Cambridge
.
17.
Hu
,
Z.
,
Gadipudi
,
V. K.
, and
Salem
,
D. R.
,
2019
, “
Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone
,”
Appl. Compos. Mater.
,
26
(
1
), pp.
15
27
.
18.
Huang
,
W.
,
Restrepo
,
D.
,
Jung
,
J. Y.
,
Su
,
F. Y.
,
Liu
,
Z.
,
Ritchie
,
R. O.
,
McKittrick
,
J.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2019
, “
Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs
,”
Adv. Mater.
,
31
(
43
), p.
1901561
.
19.
da Costa Reis
,
J.
, and
Oliveira
,
M. T.
,
2020
, “Bone: Functions, Structure and Physiology,”
The Computational Mechanics of Bone Tissue
,
J.
Belinha
,
M. C.
Manzanares-Céspedes
, and
A. M. G.
Completo
, eds.,
Springer
,
Cham
, pp.
3
43
.
20.
Pan
,
C.
,
Han
,
Y.
, and
Lu
,
J.
,
2020
, “
Design and Optimization of Lattice Structures: A Review
,”
Appl. Sci.
,
10
(
18
), p.
6374
.
21.
Fan
,
H. L.
, and
Yang
,
W.
,
2006
, “
An Equivalent Continuum Method of Lattice Structures
,”
Acta Mech. Solida Sin.
,
19
(
2
), pp.
103
113
.
22.
Hawreliak
,
J. A.
,
Lind
,
J.
,
Maddox
,
B.
,
Barham
,
M.
,
Messner
,
M.
,
Barton
,
N.
,
Jensen
,
B. J.
, and
Kumar
,
M.
,
2016
, “
Dynamic Behavior of Engineered Lattice Materials
,”
Sci. Rep.
,
6
(
1
), pp.
1
7
.
23.
Song
,
J.
,
Gao
,
L.
,
Cao
,
K.
,
Zhang
,
H.
,
Xu
,
S.
,
Jiang
,
C.
,
Surjadi
,
J. U.
,
Xu
,
Y.
, and
Lu
,
Y.
,
2018
, “
Metal-Coated Hybrid Meso-Lattice Composites and Their Mechanical Characterizations
,”
Compos. Struct.
,
203
, pp.
750
763
.
24.
Wang
,
B.
,
Wu
,
L.
,
Ma
,
L.
,
Sun
,
Y.
, and
Du
,
S.
,
2010
, “
Mechanical Behavior of the Sandwich Structures With Carbon Fiber-Reinforced Pyramidal Lattice Truss Core
,”
Mater. Des.
,
31
(
5
), pp.
2659
2663
.
25.
Li
,
W.
,
Sun
,
F.
,
Wang
,
P.
,
Fan
,
H.
, and
Fang
,
D.
,
2016
, “
A Novel Carbon Fiber Reinforced Lattice Truss Sandwich Cylinder: Fabrication and Experiments
,”
Compos. Part A
,
81
, pp.
313
322
.
26.
Frulloni
,
E.
,
Kenny
,
J. M.
,
Conti
,
P.
, and
Torre
,
L.
,
2007
, “
Experimental Study and Finite Element Analysis of the Elastic Instability of Composite Lattice Structures for Aeronautic Applications
,”
Compos. Struct.
,
78
(
4
), pp.
519
528
.
27.
Morozov
,
E. V.
,
Lopatin
,
A. V.
, and
Nesterov
,
V. A.
,
2011
, “
Finite-Element Modelling and Buckling Analysis of Anisogrid Composite Lattice Cylindrical Shells
,”
Compos. Struct.
,
93
(
2
), pp.
308
323
.
28.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
.
29.
Liu
,
Z.
,
Swaddiwudhipong
,
S.
, and
Hong
,
W.
,
2013
, “
Pattern Formation in Plants via Instability Theory of Hydrogels
,”
Soft Matter
,
9
(
2
), pp.
577
587
.
30.
Balbi
,
V.
,
Kuhl
,
E.
, and
Ciarletta
,
P.
,
2015
, “
Morphoelastic Control of Gastro-Intestinal Organogenesis: Theoretical Predictions and Numerical Insights
,”
J. Mech. Phys. Solids
,
78
, pp.
493
510
.
31.
Du
,
Y.
,
Su
,
Y.
,
,
C.
,
Chen
,
W.
, and
Destrade
,
M.
,
2020
, “
Electro-Mechanically Guided Growth and Patterns
,”
J. Mech. Phys. Solids
,
143
,
104073
.
32.
Compton
,
B. G.
, and
Lewis
,
J. A.
,
2014
, “
3D-Printing of Lightweight Cellular Composites
,”
Adv. Mater.
,
26
(
34
), pp.
5930
5935
.
33.
Wang
,
Q. M.
,
Jackson
,
J. A.
,
Ge
,
Q.
,
Hopkins
,
J. B.
,
Spadaccini
,
C. M.
, and
Fang
,
N. X.
,
2016
, “
Lightweight Mechanical Metamaterials With Tunable Negative Thermal Expansion
,”
Phys. Rev. Lett.
,
117
(
17
), p.
175901
.
34.
Liu
,
S.
,
Li
,
Y.
, and
Li
,
N.
,
2018
, “
A Novel Free-Hanging 3D Printing Method for Continuous Carbon Fiber Reinforced Thermoplastic Lattice Truss Core Structures
,”
Mater. Des.
,
137
, pp.
235
244
.
35.
Yu
,
K. H.
,
Du
,
H. X.
,
Xin
,
A.
,
Lee
,
K. H.
,
Feng
,
Z.
,
Masri
,
S. F.
,
Chen
,
Y.
,
Huang
,
G. L.
, and
Wang
,
Q. M.
,
2020
, “
Healable, Memorizable, and Transformable Lattice Structures Made of Stiff Polymers
,”
NPG Asia Mater.
,
12
(
1
), pp.
1
16
.
36.
Yu
,
K. H.
,
Xin
,
A.
,
Du
,
H. X.
,
Li
,
Y.
, and
Wang
,
Q. M.
,
2019
, “
Additive Manufacturing of Self-Healing Elastomers
,”
NPG Asia Mater.
,
11
(
1
), pp.
1
11
.
37.
Chen
,
L. Q.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
113
140
.
38.
Provatas
,
N.
, and
Elder
,
K.
,
2011
,
Phase-Field Methods in Materials Science and Engineering
,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Berger
,
J. B.
,
Wadley
,
H. N. G.
, and
McMeeking
,
R. M.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
533
537
.
40.
Xin
,
A.
,
Du
,
H.
,
Yu
,
K.
, and
Wang
,
Q.
,
2020
, “
Mechanics of Bacteria-Assisted Extrinsic Healing
,”
J. Mech. Phys. Solids
,
139
,
103938
.
41.
She
,
M.
,
2008
, “
Phase Field Model for Precipitates in Crystals
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
42.
Porter
,
D. A.
, and
Easterling
,
K. E.
,
2009
,
Phase Transformations in Metals and Alloys (Revised Reprint)
,
CRC Press
,
Boca Raton, FL
.
43.
Cahn
,
J. W.
, and
Allen
,
S. M.
,
1977
, “
A Microscopic Theory for Domain Wall Motion and Its Experimental Verification in Fe-Al Alloy Domain Growth Kinetics
,”
Le J. Phys. Colloques
,
38
(
C7
), pp.
C7
51
.
44.
Ratke
,
L.
, and
Voorhees
,
P. W.
,
2002
, “Transport of Heat and Mass,”
Growth and Coarsening.
Springer
,
Berlin, Heidelberg
, pp.
43
55
.
45.
Zener
,
C.
,
1949
, “
Theory of Growth of Spherical Precipitates From Solid Solution
,”
J. Appl. Phys.
,
20
(
10
), pp.
950
953
.
46.
Su
,
Y. P.
,
Wang
,
H. M.
,
Zhang
,
C. L.
, and
Chen
,
W. Q.
,
2016
, “
Propagation of Non-Axisymmetric Waves in an Infinite Soft Electroactive Hollow Cylinder Under Uniform Biasing Fields
,”
Int. J. Solids Struct.
,
81
, pp.
262
273
.
47.
Balluffi
,
R. W.
,
Allen
,
S. M.
, and
Carter
,
W. C.
,
2005
,
Kinetics of Materials
,
John Wiley & Sons
,
Hoboken, NJ
.
48.
Wheeler
,
A. A.
,
Boettinger
,
W. J.
, and
McFadden
,
G. B.
,
1992
, “
Phase-Field Model for Isothermal Phase Transitions in Binary Alloys
,”
Phys. Rev. A
,
45
(
10
), pp.
7424
7439
.
49.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier Corporation
,
Chelmsford, MA
.
You do not currently have access to this content.