Abstract

Head injuries induced by tennis ball impacts are computationally studied. The impact of a two-piece tennis ball on a human head is simulated by using an established full body model and a newly constructed tennis ball model. The new tennis ball model is validated against existing experimental data. The frontal impact of a tennis ball on a human head at a velocity of 25 m/s is first studied as the baseline case. The effects of the impact location, velocity, and angle as well as the ball spinning are then examined. It is revealed that the lateral impact results in a higher risk of head injury than the frontal and crown impacts. In addition, it is found that the impact force and von Mises stress in the skull, the intracranial pressure and first principal strain in the brain, and the translational and rotational accelerations at the center of gravity of the head all increase with the increase of the impact velocity. Moreover, the normal (90-deg) impact has the highest risk of head injury, which is followed by the 60-deg, 45-deg and 30-deg impacts. Further, it is observed that the spinning of the tennis ball has insignificant effects on the head response. The simulation results show that there will be no skull fracture or mild brain injury in the baseline case. However, traumatic brain injuries may occur after the impact velocity exceeds 40 m/s. The findings of the current study provide new insights into the risks of head injuries induced by tennis ball impacts.

References

1.
Viano
,
D. C.
,
Casson
,
I. R.
,
Pellman
,
E. J.
,
Zhang
,
L. Y.
,
King
,
A. I.
, and
Yang
,
K. H.
,
2005
, “
Concussion in Professional Football: Brain Responses by Finite Element Analysis: Part 9
,”
Neurosurgery
,
57
(
5
), pp.
891
916
.
2.
Viano
,
D. C.
,
Casson
,
I. R.
, and
Pellman
,
E. J.
,
2007
, “
Concussion in Professional Football: Biomechanics of the Struck Player—Part 14
,”
Neurosurgery
,
61
(
2
), pp.
313
328
.
3.
Abrams
,
G. D.
,
Renstrom
,
P. A.
, and
Safran
,
M. R.
,
2012
, “
Epidemiology of Musculoskeletal Injury in the Tennis Player
,”
Br. J. Sports Med.
,
46
(
7
), pp.
492
498
.
4.
Maher
,
M. E.
,
Hutchison
,
M.
,
Cusimano
,
M.
,
Comper
,
P.
, and
Schweizer
,
T. A.
,
2014
, “
Concussions and Heading in Soccer: A Review of the Evidence of Incidence, Mechanisms, Biomarkers and Neurocognitive Outcomes
,”
Brain Inj.
,
28
(
3
), pp.
271
285
.
5.
Li
,
Y. Q.
, and
Gao
,
X.-L.
,
2019
, “
Modeling of Head Injuries Induced by Golf Ball Impacts
,”
Mech. Adv. Mater. Struct.
,
26
(
21
), pp.
1751
1763
.
6.
Kleiven
,
S.
,
2007
, “
Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions
,”
Stapp Car Crash J.
,
51
, pp.
81
114
.
7.
Spiotta
,
A. M.
,
Bartsch
,
A. J.
, and
Benzel
,
E. C.
,
2012
, “
Heading in Soccer: Dangerous Play?
,”
Neurosurgery
,
70
(
1
), pp.
1
11
.
8.
McCrory
,
P.
,
Meeuwisse
,
W. H.
,
Aubry
,
M.
,
Cantu
,
R. C.
,
Dvořák
,
J.
,
Echemendia
,
R. J.
,
Engebretsen
,
L.
, et al
,
2013
, “
Consensus Statement on Concussion in Sport—The 4th International Conference on Concussion in Sport, Zurich, November 2012
,”
J. Sci. Med. Sport
,
16
(
3
), pp.
178
189
.
9.
Pearce
,
A. J.
, and
Young
,
J. A.
,
2016
, “
Hard Knocks: Concussion Injuries in Tennis
,”
ITF Coaching Sport Sci. Rev.
,
24
(
70
), pp.
5
7
.
10.
Dekker
,
R.
,
Kingma
,
J.
,
Groothoff
,
J.
,
Eisma
,
W.
, and
Duis
,
H. T.
,
2000
, “
Measurement of Severity of Sports Injuries: An Epidemiological Study
,”
Clin. Rehabil.
,
14
(
6
), pp.
651
656
.
11.
Pluim
,
B. M.
,
Staal
,
J. B.
,
Windler
,
G. E.
, and
Jayanthi
,
N.
,
2006
, “
Tennis Injuries: Occurrence, Aetiology, and Prevention
,”
Br. J. Sports Med.
,
40
(
5
), pp.
415
423
.
12.
Lynall
,
R. C.
,
Kerr
,
Z. Y.
,
Djoko
,
A.
,
Pluim
,
B. M.
,
Hainline
,
B.
, and
Dompier
,
T. P.
,
2016
, “
Epidemiology of National Collegiate Athletic Association Men's and Women's Tennis Injuries, 2009/2010–2014/2015
,”
Br. J. Sports Med.
,
50
(
19
), pp.
1211
1216
.
13.
Sell
,
K.
,
Hainline
,
B.
,
Yorio
,
M.
, and
Kovacs
,
M.
,
2014
, “
Injury Trend Analysis From the US Open Tennis Championships Between 1994 and 2009
,”
Br. J. Sports Med.
,
48
(
7
), pp.
546
551
.
14.
Gaw
,
C. E.
,
Chounthirath
,
T.
, and
Smith
,
G. A.
,
2014
, “
Tennis-Related Injuries Treated in United States Emergency Departments, 1990 to 2011
,”
Clin. J. Sport Med.
,
24
(
3
), pp.
226
232
.
15.
Maquirriain
,
J.
, and
Baglione
,
R.
,
2016
, “
Epidemiology of Tennis Injuries: An Eight-Year Review of Davis Cup Retirements
,”
Eur. J. Sport Sci.
,
16
(
2
), pp.
266
270
.
16.
Karimi
,
A.
,
Razaghi
,
R.
,
Navidbakhsh
,
M.
,
Sera
,
T.
, and
Kudo
,
S.
,
2016
, “
Quantifying the Injury of the Human Eye Components Due to Tennis Ball Impact Using a Computational Fluid–Structure Interaction Model
,”
Sports Eng.
,
19
(
2
), pp.
105
115
.
17.
Myles
,
S.
,
2015
, “
Concussions Are Rare in Tennis, But When Considering Eugenie Bouchard’s Case, Remember Sarah Borwell
,” https://ca.sports.yahoo.com/blogs/eh-game/concussions-are-rare-in-tennis–but-when-considering-eugenie-bouchard-s-case–consider-the-case-of-sarah-borwell-193510574.html, Accessed July 13, 2023.
18.
Rowson
,
S.
,
Duma
,
S. M.
,
Beckwith
,
J. G.
,
Chu
,
J. J.
,
Greenwald
,
R. M.
,
Crisco
,
J. J.
,
Brolinson
,
P. G.
, et al
,
2012
, “
Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
1
13
.
19.
Beyer
,
J. A.
,
Rowson
,
S.
, and
Duma
,
S. M.
,
2012
, “
Concussions Experienced by Major League Baseball Catchers and Umpires: Field Data and Experimental Baseball Impacts
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
150
159
.
20.
Haake
,
S. J.
,
1998
, “
Impact Problems of Balls in Tennis and Golf
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
64
(
623
), pp.
2318
2327
.
21.
Haake
,
S. J.
,
Goodwill
,
S. R.
, and
Carre
,
M. J.
,
2007
, “
A New Measure of Roughness for Defining the Aerodynamic Performance of Sports Balls
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
221
(
7
), pp.
789
806
.
22.
Robinson
,
G.
, and
Robinson
,
I.
,
2018
, “
Model Trajectories for a Spinning Tennis Ball: I. The Service Stroke
,”
Phys. Scr.
,
93
(
12
), p.
123002
.
23.
LS-DYNA
,
2017
,
Keyword User’s Manual, Volume II: Material Models
,
Livermore Software Technology
,
Livermore, CA
.
24.
Goodwill
,
S. R.
,
Kirk
,
R.
, and
Haake
,
S. J.
,
2005
, “
Experimental and Finite Element Analysis of a Tennis Ball Impact on a Rigid Surface
,”
Sports Eng.
,
8
(
3
), pp.
145
158
.
25.
Karimi
,
A.
,
Kudo
,
S.
,
Razaghi
,
R.
, and
Navidbakhsh
,
M.
,
2015
, “
A Combination of Experimental and Numerical Analyses to Measure the Compressive Mechanical Properties of Tennis Ball
,”
Biomed. Eng. - Appl. Basis Commun.
,
27
(
4
), p.
1550039
.
26.
Allen
,
T. B.
,
2009
, “
Finite Element Model of a Tennis Ball Impact With a Racket
,”
Doctoral dissertation
,
Sheffield Hallam University
,
United Kingdom
.
27.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, England
.
28.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Ellis Harwood Ltd
,
Chichester, England
.
29.
Christensen
,
R. M.
,
1980
, “
A Nonlinear Theory of Viscoelasticity for Application to Elastomers
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
762
768
.
30.
Christensen
,
R. M.
,
1982
,
Theory of Viscoelasticity: An Introduction
, 2nd ed.,
Academic Press
,
New York
.
31.
Kulkarni
,
S.
,
Gao
,
X.-L.
,
Horner
,
S. E.
,
Mortlock
,
R. F.
, and
Zheng
,
J. Q.
,
2016
, “
A Transversely Isotropic Visco-Hyperelastic Constitutive Model for Soft Tissues
,”
Math. Mech. Solids
,
21
(
6
), pp.
747
770
.
32.
David
,
N. V.
,
Gao
,
X.-L.
, and
Zheng
,
J. Q.
,
2011
, “
Stress Relaxation of a Twaron®/Natural Rubber Composite
,”
ASME J. Eng. Mater. Technol.
,
133
(
1
), p.
011001
.
33.
Schwartz
,
D.
,
Guleyupoglu
,
B.
,
Koya
,
B.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
Development of a Computationally Efficient Full Human Body Finite Element Model
,”
Traffic Inj. Prev.
,
16
(
sup1
), pp.
S49
S56
.
34.
Untaroiu
,
C. D.
,
Putnam
,
J. B.
,
Schap
,
J.
,
Davis
,
M. L.
, and
Gayzik
,
F. S.
,
2015
, “
Development and Preliminary Validation of a 50th Percentile Pedestrian Finite Element Model
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
,
American Society of Mechanical Engineers
,
New York
, Paper No. DETC2015-47781.
35.
Fice
,
J. B.
,
Moulton
,
J.
, and
Cronin
,
D. S.
,
2011
, “
Development of a Detailed Finite Element Neck Model for Automotive Safety Research
,”
Proceedings of the Thirty-Ninth International Workshop on Human Subjects for Biomechanical Research, NHTSA
, Dearborn, MI, Nov. 6, pp.
1
12
.
36.
White
,
N. A.
,
Danelson
,
K. A.
,
Gayzik
,
F. S.
, and
Stitzel
,
J. D.
,
2014
, “
Head and Neck Response of a Finite Element Anthropomorphic Test Device and Human Body Model During a Simulated Rotary-Wing Aircraft Impact
,”
ASME J. Biomech. Eng.
,
136
(
11
), p.
111001
.
37.
Grindle
,
D.
,
Aira
,
J.
,
Gayzik
,
F. S.
, and
Untaroiu
,
C.
,
2022
, “
A Validated Lower Extremity Model to Investigate the Effect of Stabilizing Knee Components in Pedestrian Collisions
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
236
(
10
), pp.
1552
1571
.
38.
Mao
,
H. J.
,
Zhang
,
L. Y.
,
Jiang
,
B. H.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
,
Makwana
,
R.
, et al
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty-Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111002
.
39.
Fice
,
J. B.
,
Cronin
,
D. S.
, and
Panzer
,
M. B.
,
2011
, “
Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2152
2162
.
40.
Li
,
Z. P.
,
Kindig
,
M. W.
,
Kerrigan
,
J. R.
,
Untaroiu
,
C. D.
,
Subit
,
D.
,
Crandall
,
J. R.
, and
Kent
,
R. W.
,
2010
, “
Rib Fractures Under Anterior–Posterior Dynamic Loads: Experimental and Finite-Element Study
,”
J. Biomech.
,
43
(
2
), pp.
228
234
.
41.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Geer
,
C. P.
,
Wuertzer
,
S. D.
,
Martin
,
R. S.
, and
Stitzel
,
J. D.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2568
2583
.
42.
Kim
,
Y. H.
,
Kim
,
J.-E.
, and
Eberhardt
,
A. W.
,
2014
, “
A New Cortical Thickness Mapping Method With Application to an In Vivo Finite Element Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
9
), pp.
997
1001
.
43.
Yue
,
N.
, and
Untaroiu
,
C. D.
,
2014
, “
A Numerical Investigation on the Variation in Hip Injury Tolerance With Occupant Posture During Frontal Collisions
,”
Traffic Inj. Prev.
,
15
(
5
), pp.
513
522
.
44.
Li
,
Y. Q.
,
Fan
,
H. L.
, and
Gao
,
X.-L.
,
2022
, “
Ballistic Helmets: Recent Advances in Materials, Protection Mechanisms, Performance, and Head Injury Mitigation
,”
Compos. Part B: Eng.
,
238
, p.
109890
.
45.
Li
,
X. G.
,
Zhou
,
Z.
, and
Kleiven
,
S.
,
2021
, “
An Anatomically Detailed and Personalizable Head Injury Model: Significance of Brain and White Matter Tract Morphological Variability on Strain
,”
Biomech. Model. Mechanobiol.
,
20
(
2
), pp.
403
431
.
46.
Unnikrishnan
,
G.
,
Hatwar
,
R.
,
Hornby
,
S.
,
Laxminarayan
,
S.
,
Gulati
,
T.
,
Belval
,
L. N.
,
Giersch
,
G. E.
, et al.,
2021
, “
A 3-D Virtual Human Thermoregulatory Model to Predict Whole-Body and Organ-Specific Heat-Stress Responses
,”
Eur. J. Appl. Physiol.
,
121
(
9
), pp.
2543
2562
.
47.
Gulati
,
T.
,
Hatwar
,
R.
,
Unnikrishnan
,
G.
,
Rubio
,
J. E.
, and
Reifman
,
J.
,
2022
, “
A 3-D Virtual Human Model for Simulating Heat and Cold Stress
,”
J. Appl. Physiol.
,
133
(
2
), pp.
288
310
.
48.
Zhang
,
L. Y.
,
Yang
,
K. H.
,
Dwarampudi
,
R.
,
Omori
,
K.
,
Li
,
T. L.
,
Chang
,
K.
,
Hardy
,
W. N.
,
Khalil
,
T. B.
, and
King
,
A. I.
,
2001
, “
Recent Advances in Brain Injury Research: A New Human Head Model Development and Validation
,”
Stapp Car Crash J.
,
45
, pp.
369
394
.
49.
de Rooij
,
R.
, and
Kuhl
,
E.
,
2016
, “
Constitutive Modeling of Brain Tissue: Current Perspectives
,”
ASME Appl. Mech. Rev.
,
68
(
1
), p.
010801
.
50.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2016
, “
On the Accuracy and Fitting of Transversely Isotropic Material Models
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
554
566
.
51.
Zhang
,
W.
,
Zhang
,
R. R.
,
Feng
,
L. L.
,
Li
,
Y.
,
Wu
,
F.
, and
Wu
,
C. W.
,
2016
, “
Mechanical Response of Brain Stem in Compression and the Differential Scanning Calorimetry and FTIR Analyses
,”
ASME J. Appl. Mech.
,
83
(
9
), p.
091005
.
52.
Chanda
,
A.
,
Callaway
,
C.
,
Clifton
,
C.
, and
Unnikrishnan
,
V.
,
2018
, “
Biofidelic Human Brain Tissue Surrogates
,”
Mech. Adv. Mater. Struct.
,
25
(
15–16
), pp.
1335
1341
.
53.
Jafarabadi
,
F.
,
Wang
,
S.
, and
Holland
,
M. A.
,
2023
, “
A Numerical Study on the Influence of Cerebrospinal Fluid Pressure on Brain Folding
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071006
.
54.
Sissler
,
L.
,
2012
, “
Advanced Modelling and Design of a Tennis Ball
,”
Doctoral dissertation
,
Loughborough University
,
UK
.
55.
Andrew
,
D. P.
,
Chow
,
J. W.
,
Knudson
,
D. V.
, and
Tillman
,
M. D.
,
2003
, “
Effect of Ball Size on Player Reaction and Racket Acceleration During the Tennis Volley
,”
J. Sci. Med. Sport.
,
6
(
1
), pp.
102
112
.
56.
Haake
,
S. J.
,
Carré
,
M. J.
, and
Goodwill
,
S. R.
,
2003
, “
The Dynamic Impact Characteristics of Tennis Balls With Tennis Rackets
,”
J. Sports Sci.
,
21
(
10
), pp.
839
850
.
57.
Roberts
,
J. R.
,
Jones
,
R.
, and
Rothberg
,
S. J.
,
2001
, “
Measurement of Contact Time in Short Duration Sports Ball Impacts: An Experimental Method and Correlation With the Perceptions of Elite Golfers
,”
Sports Eng.
,
4
(
4
), pp.
191
203
.
58.
Freitas
,
C. J.
,
Mathis
,
J. T.
,
Scott
,
N.
,
Bigger
,
R. P.
, and
Mackiewicz
,
J.
,
2014
, “
Dynamic Response Due to Behind Helmet Blunt Trauma Measured With a Human Head Surrogate
,”
Int. J. Med. Sci.
,
11
(
5
), pp.
409
425
.
59.
Li
,
X. G.
,
Gao
,
X.-L.
, and
Kleiven
,
S.
,
2016
, “
Behind Helmet Blunt Trauma Induced by Ballistic Impact: A Computational Model
,”
Int. J. Impact Eng.
,
91
, pp.
56
67
.
60.
Goodwill
,
S. R.
, and
Haake
,
S. J.
,
2004
, “
Ball Spin Generation for Oblique Impacts With a Tennis Racket
,”
Exp. Mech.
,
44
(
2
), pp.
195
206
.
61.
Goodwill
,
S. R.
,
Chin
,
S. B.
, and
Haake
,
S. J.
,
2004
, “
Aerodynamics of Spinning and Non-Spinning Tennis Balls
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
11
), pp.
935
958
.
62.
Allen
,
T. B.
,
Ibbitson
,
J.
, and
Haake
,
S. J.
,
2012
, “
Spin Generation During an Oblique Impact of a Compliant Ball on a Non-Compliant Surface
,”
Proc. Inst. Mech. Eng. Pt. P J. Sports Eng. Tech.
,
226
(
2
), pp.
86
95
.
63.
Palomar
,
M.
,
Lozano-Mínguez
,
E.
,
Rodríguez-Millán
,
M.
,
Miguélez
,
M. H.
, and
Giner
,
E.
,
2018
, “
Relevant Factors in the Design of Composite Ballistic Helmets
,”
Compos. Struct.
,
201
, pp.
49
61
.
64.
Sepulveda-Lopez
,
D.
,
Antona-Makoshi
,
J.
,
Rubio
,
I.
, and
Rodríguez-Millán
,
M.
,
2020
, “
Numerical Analysis of Bicycle Helmet Under Blunt Behavior
,”
Appl. Sci.
,
10
(
11
), p.
3692
.
65.
Hisley
,
D. M.
,
Gurganus
,
J. C.
, and
Drysdale
,
A. W.
,
2011
, “
Experimental Methodology Using Digital Image Correlation to Assess Ballistic Helmet Blunt Trauma
,”
ASME J. Appl. Mech.
,
78
(
5
), p.
051022
.
66.
Begley
,
M. R.
, and
Zok
,
F. W.
,
2014
, “
Optimal Material Properties for Mitigating Brain Injury During Head Impact
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031014
.
67.
Li
,
Y. Q.
,
Li
,
X. G.
, and
Gao
,
X.-L.
,
2015
, “
Modeling of Advanced Combat Helmet Under Ballistic Impact
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111004
.
68.
Allsop
,
D. L.
,
Perl
,
T. R.
, and
Warner
,
C. Y.
,
1991
, “
Force/Deflection and Fracture Characteristics of the Temporo-Parietal Region of the Human Head
,”
SAE Trans. Section 6: Int. J. Passenger Cars
, 100, pp.
2009
2018
.
69.
Hardy
,
C. H.
, and
Marcal
,
P. V.
,
1973
, “
Elastic Analysis of a Skull
,”
ASME J. Appl. Mech.
,
40
(
4
), pp.
838
842
.
70.
Cormier
,
J.
,
Manoogian
,
S.
,
Bisplinghoff
,
J.
,
Rowson
,
S.
,
Santago
,
A.
,
McNally
,
C.
,
Duma
,
S.
, and
Bolte
,
J.
,
2011
, “
The Tolerance of the Frontal Bone to Blunt Impact
,”
ASME J. Biomech. Eng.
,
133
(
2
), p.
021004
.
71.
Melvin
,
J. W.
,
McElhaney
,
J. H.
, and
Roberts
,
V. L.
,
1970
, “
Development of a Mechanical Model of the Human Head-Determination of Tissue Properties and Synthetic Substitute Materials
,”
SAE Trans. Section 4
, 79, pp.
2685
2694
.
72.
Schaller
,
A.
,
Voigt
,
C.
,
Huempfner-Hierl
,
H.
,
Hemprich
,
A.
, and
Hierl
,
T.
,
2012
, “
Transient Finite Element Analysis of a Traumatic Fracture of the Zygomatic Bone Caused by a Head Collision
,”
Int. J. Oral Maxillofac. Surg.
,
41
(
1
), pp.
66
73
.
73.
Ward
,
C.
,
Chan
,
M.
, and
Nahum
,
A.
,
1980
, “
Intracranial Pressure—A Brain Injury Criterion
,”
SAE Trans. Section 4
, 89, pp.
3867
3880
.
74.
Zhang
,
L. Y.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.
75.
Hernandez
,
F.
,
Wu
,
L. C.
,
Yip
,
M. C.
,
Laksari
,
K.
,
Hoffman
,
A. R.
,
Lopez
,
J. R.
,
Grant
,
G. A.
,
Kleiven
,
S.
, and
Camarillo
,
D. B.
,
2015
, “
Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1918
1934
.
76.
Ono
,
K.
,
Kikuchi
,
A.
,
Nakamura
,
M.
,
Kobayashi
,
H.
, and
Nakamura
,
N.
,
1980
, “
Human Head Tolerance to Sagittal Impact—Reliable Estimation Deduced From Experimental Head Injury Using Subhuman Primates and Human Cadaver Skulls
,”
SAE Trans.
,
89
(
4
), pp.
3837
3866
.
77.
Margulies
,
S. S.
, and
Thibault
,
L. E.
,
1992
, “
A Proposed Tolerance Criterion for Diffuse Axonal Injury in Man
,”
J. Biomech.
,
25
(
8
), pp.
917
923
.
78.
Beckwith
,
J. G.
,
Greenwald
,
R. M.
,
Chu
,
J. J.
,
Crisco
,
J. J.
,
Rowson
,
S.
,
Duma
,
S. M.
,
Broglio
,
S. P.
, et al
,
2013
, “
Timing of Concussion Diagnosis is Related to Head Impact Exposure Prior to Injury
,”
Med. Sci. Sports Exerc.
,
45
(
4
), pp.
747
754
.
79.
Rowson
,
S.
,
Duma
,
S. M.
,
Stemper
,
B. D.
,
Shah
,
A.
,
Mihalik
,
J. P.
,
Harezlak
,
J.
,
Riggen
,
L. D.
, et al
,
2018
, “
Correlation of Concussion Symptom Profile With Head Impact Biomechanics: A Case for Individual-Specific Injury Tolerance
,”
J. Neurotrauma
,
35
(
4
), pp.
681
690
.
80.
Zhang
,
L. Y.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2001
, “
Comparison of Brain Responses Between Frontal and Lateral Impacts by Finite Element Modeling
,”
J. Neurotrauma
,
18
(
1
), pp.
21
30
.
81.
Hodgson
,
V. R.
,
Thomas
,
L. M.
, and
Khalil
,
T. B.
,
1983
, “
The Role of Impact Location in Reversible Cerebral Concussion
,”
SAE Trans.
,
92
, pp.
512
527
.
82.
Kleiven
,
S.
,
2003
, “
Influence of Impact Direction on the Human Head in Prediction of Subdural Hematoma
,”
J. Neurotrauma
,
20
(
4
), pp.
365
379
.
83.
Greenwald
,
R. M.
,
Gwin
,
J. T.
,
Chu
,
J. J.
, and
Crisco
,
J. J.
,
2008
, “
Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure
,”
Neurosurgery
,
62
(
4
), pp.
789
798
.
You do not currently have access to this content.