The size and distribution of particles suspended within a fluid influence the rheology of the suspension, as well as strength and other mechanical properties if the fluid eventually solidifies. An important motivating example of current interest is foamed cements used for carbon storage and oil and gas wellbore completion. In these applications, it is desired that the suspended particles maintain dispersion during flow and do not coalesce or cluster. This paper compares the role of mono- against polydispersity in the particle clustering process. The propensity of hard spherical particles in a suspension to transition from a random configuration to an ordered configuration, or to form localized structures of particles, due to flow is investigated by comparing simulations of monodisperse and polydisperse suspensions using Stokesian dynamics. The calculations examine the role of the polydispersity on particles rearrangements and structuring of particles due to flow and the effects of the particle size distribution on the suspension viscosity. A key finding of this work is that a small level of polydispersity in the particle sizes helps to reduce localized structuring of the particles in the suspension. A suspension of monodisperse hard spheres forms structures at a particle volume fraction of approximately 47% under shear, but a 47% volume fraction of polydisperse particles in suspension does not form these structures.

References

References
1.
Loeffler
,
N.
,
1984
, “
Foamed Cement: A Second Generation
,”
Permian Basin Oil and Gas Recovery Conference
.
2.
de Rozieres
,
J.
, and
Griffin
,
T. J.
,
1990
, “
Chapter 14 Foamed Cements
,”
Well Cementing
,
E. B.
Nelson
, ed.,
Schlumberger Educational Services
, TX, pp.
14.1
14.19
.
3.
American Petroleum Institute
,
2010
, “
Isolating Potential Flow Zones During Well Construction—API Standard 65 Part 2
.”
4.
Tan
,
L.
,
Ye
,
G.
,
Schlangen
,
E.
, and
Van Breugel
,
K.
,
2007
, “Coupling of Hydration and Fracture Models: Failure Mechanisms in Hydrating Cement Particle Systems,”
Particle and Continuum Aspects of Mesomechanics
,
ISTE Ltd.
,
London, UK
, pp.
563
571
.
5.
Tan
,
L. K.
,
Schlangen
,
E.
, and
Ye
,
G.
,
2007
, “
Simulation of Failure in Hydrating Cement Particles Systems
,”
Key Engineering Materials
, Vol.
348
, pp.
737
740
.
6.
NETL
,
2019
, “
Tbd
.”
Internal Research
.
7.
Brady
,
J. F.
, and
Bossis
,
G.
,
1988
, “
Stokesian Dynamics
,”
Annu. Rev. Fluid. Mech.
,
20
(
1
), pp.
111
157
.
8.
Bybee
,
M. D.
,
2009
, “
Hydrodynamic Simulations of Colloidal Gels: Microstructure, Dynamics, and Rheology
,” PhD thesis,
University of Illinois at Urbana-Champaign
,
Champaign, IL
.
9.
Kumar
,
A.
,
2010
, “
Microscale Dynamics in Suspensions of Non-Spherical Particles
,” PhD thesis,
University of Illinois at Urbana-Champaign
,
Champaign, IL
.
10.
Kumar
,
A.
, and
Higdon
,
J. J. L.
,
2010
, “
Origins of the Anomalous Stress Behavior in Charged Colloidal Suspensions Under Shear
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
82
(
September
), p.
524
.
11.
Soo
,
S. L.
,
1967
,
Fluid Dynamics of Multiphase Systems
,
Waltham, MA
,
Blaisdell Publishing Co
,
524
pp.
12.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York, NY
.
13.
Truesdell
,
C.
,
1984
,
Rational Thermodynamics
,
Springer
,
New York, NY
.
14.
Bowen
,
R.
,
1976
, “
Theory of Mixtures
,”
Continuum Physics
, Vol.
III
,
A.
Eringen
, ed.,
Academic Press
,
New York
, p.
1
.
15.
Atkin
,
R.
, and
Craine
,
R.
,
1976
, “
Continuum Theories of Mixtures: Basic Theory and Historical Development
,”
Q. J. Mech. Appl. Math.
,
29
(
2
), pp.
209
244
.
16.
Rajagopal
,
K. R.
, and
Tao
,
L.
,
1995
,
Mechanics of Mixtures
, Vol.
35
,
World Scientific
,
Singapore
.
17.
Massoudi
,
M.
,
2008
, “
A Note on the Meaning of Mixture Viscosity Using the Classical Continuum Theories of Mixtures
,”
Int. J. Eng. Sci.
,
46
(
7
), pp.
677
689
.
18.
Massoudi
,
M.
,
2010
, “
A Mixture Theory Formulation for Hydraulic or Pneumatic Transport of Solid Particles
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1440
1461
.
19.
Massoudi
,
M.
,
2002
, “
On the Importance of Material Frame-Indifference and Lift Forces in Multiphase Flows
,”
Chem. Eng. Sci.
,
57
(
17
), pp.
3687
3701
.
20.
Massoudi
,
M.
,
2003
, “
Constitutive Relations for the Interaction Force in Multicomponent Particulate Flows
,”
Int. J. Nonlinear Mech.
,
38
(
3
), pp.
313
336
.
21.
Eringen
,
A. C.
,
2007
,
Nonlocal Continuum Field Theories
,
Springer Science & Business Media
,
Berlin
.
22.
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
Crowe
,
C.
, and
Tsuji
,
Y.
,
1998
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
23.
Clift
,
R.
,
1978
,
Bubbles, Drops and Particles
,
Dover Publications, Inc.
,
Mineola, New York, NY
.
24.
Sadhal
,
S.
,
Ayyaswamy
,
P.
, and
Chung
,
J.
,
1997
,
Transport Phenomena With Bubbles and Drops
,
Springer
,
New York, NY
.
25.
Tchen
,
C.
,
1947
,
Mean Value and Correlation Problems Connected with the Motion of Small Particles Suspended in a Turbulent Fluid
,
Springer
,
New York, NY
.
26.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.
27.
Happel
,
J.
, and
Brenner
,
H.
,
1973
, “
Low Reynolds Number Hydrodynamics
,” Vol.
235
,
Noordhoff International Publishing
,
Leyden, Netherland
.
28.
Wu
,
W.-T.
,
Aubry
,
N.
,
Antaki
,
J. F.
,
McKoy
,
M. L.
, and
Massoudi
,
M.
,
2017
, “
Heat Transfer in a Drilling Fluid With Geothermal Applications
,”
Energies
,
10
(
9
), p.
1349
.
29.
Herrmann
,
H.
,
1999
, “
Statistical Models for Granular Materials
,”
Phys. A Stat. Mech. Appl.
,
263
(
1–4
), pp.
51
62
.
30.
Herrmann
,
H.
, and
Luding
,
S.
,
1998
, “
Modeling Granular Media on the Computer
,”
Continuum Mech. Thermodyn.
,
10
(
4
), pp.
189
231
.
31.
Goldhirsch
,
I.
,
2003
, “
Rapid Granular Flows
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
267
293
.
32.
Walton
,
I. O.
, and
Braun
,
R.
,
1986
, “
Stress Calculations for Assemblies of Inelastic Speres in Uniform Shear
,”
Acta Mech.
,
63
(
1–4
), pp.
73
86
.
33.
L. E. U. D. o. E. N. E. T. L.
Dalton
,
O. R. I. for Science, Education, A. Brown, Sarah (US Department of Energy National Energy Technology Laboratory, A. Moore, Johnathan (US Department of Energy National Energy Technology Laboratory, D. U. D. o. E. N. E. T. L. Crandall, and A. Gill, Magdalena (US Department of Energy National Energy Technology Laboratory: “Evolution Using CT Scanning: Insights From Elevated-Pressure Generation,”
no. Jan., pp.
1
11
,
2018
.
34.
Rahimian
,
A.
,
Veerapaneni
,
S. K.
,
Zorin
,
D.
, and
Biros
,
G.
,
2015
, “
Boundary Integral Method for the Flow of Vesicles With Viscosity Contrast in Three Dimensions
,”
J. Comput. Phys.
,
298
, pp.
766
786
.
35.
Roussel
,
N.
,
2005
, “
Steady and Transient Flow Behaviour of Fresh Cement Pastes
,”
Cement Concrete Res.
,
35
, pp.
1656
1664
.
36.
Guillot
,
D.
,
1990
, “
Rheology of Well Cement Slurries
,”
Dev. Petroleum Sci.
,
28
(
C
), pp.
4-1
4-37
.
37.
Kutchko
,
B.
,
Crandall
,
D.
,
Moore
,
J.
,
Gill
,
M.
,
McIntyre
,
D.
,
Rosenbaum
,
E.
,
Haljasmaa
,
I.
,
Strazisar
,
B.
,
Spaulding
,
R.
,
Harbert
,
W.
,
Benge
,
G.
,
Cunningham
,
E.
,
Lawrence
,
D. W.
,
DeBruijn
,
G.
, and
Gardner
,
C.
,
2015
, “
Field-Generated Foamed Cement: Initial Collection, Computed Tomography, and Analysis
,”
Technical Report, U.S. Department of Energy
,
National Energy Technology Laboratory
.
38.
Kutchko
,
B.
,
Crandall
,
D.
,
Gill
,
M.
,
McIntyre
,
D.
,
Spaulding
,
R.
,
Strazisar
,
B.
,
Rosenbaum
,
E.
,
Haljasmaa
,
I.
,
Benge
,
G.
,
Cunningham
,
E.
,
DeBruijn
,
G.
, and
Gardner
,
C.
,
2013
, “
Computed Tomography and Statistical Analysis of Bubble Size Distributions in Atmospheric-Generated Foamed Cement
,”
Technical Report
.
39.
Pugh
,
R. J.
,
1996
, “
Foaming, Foam Films, Antifoaming and Defoaming
,”
Adv. Colloid Interface Sci.
,
64
(
95
), pp.
67
142
.
40.
Kim
,
S.
, and
Karrila
,
S. J.
,
2005
,
Microhydrodynamics: Principles and Selected Applications
,
2nd ed.
,
Dover Publications Inc.
,
Mineola, NY
.
41.
Ball
,
R. C.
, and
Melrose
,
J. R.
,
1997
, “
A Simulation Technique for Many Spheres in Quasi-Static Motion Under Frame-Invariant Pair Drag and Brownian Forces
,”
Phys. A Stat. Mech. Appl.
,
247
(
1–4
), pp.
444
472
.
42.
Sangani
,
A.
, and
Acrivos
,
A.
,
1983
, “
The Effective Conductivity of a Periodic Array of Spheres
,”
Proc. R. Soc. Lond. A
,
386
(
1791
), pp.
263
275
.
43.
James
,
R. D.
, and
Müller
,
S.
,
1994
, “
Internal Variables and Fine-Scale Oscillations in Micromagnetics
,”
Continuum Mech. Thermodyn.
,
6
(
4
), pp.
291
336
.
44.
Xiao
,
Y.
,
2005
, “
The Influence of Oxygen Vacancies on Domain Patterns in Ferroelectric Perovskites
,”
PhD thesis
,
California Institute of Technology
,
Pasadena, CA
.
45.
Marshall
,
J.
, and
Dayal
,
K.
,
2014
, “
Atomistic-to-Continuum Multiscale Modeling With Long-Range Electrostatic Interactions in Ionic Solids
,”
J. Mech. Phys. Solids
,
62
, pp.
137
162
.
46.
Bossis
,
G.
, and
Brady
,
J. F.
,
1984
, “
Dynamic Simulations of Sheared Suspensions. I. General Method
,”
J. Chem. Phys.
,
80
(
10
), pp.
5141
5154
.
47.
Jeffrey
,
D. J.
, and
Onishi
,
Y.
,
1984
, “
Calculation of the Resistance and Mobility Functions for Two Unequal Rigid Spheres in Low-Reynolds-Number Flow
,”
J. Fluid Mech.
,
139
(
1
), p.
261
.
48.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.
49.
Lees
,
A.
, and
Edwards
,
S.
,
1972
, “
The Computer Study of Transport Processes Under Extreme Conditions
,”
J. Phys. C Solid State Phys.
,
5
(
15
), p.
1921
.
50.
Dayal
,
K.
, and
James
,
R. D.
,
2010
, “
Nonequilibrium Molecular Dynamics for Bulk Materials and Nanostructures
,”
J. Mech. Phys. Solids
,
58
(
2
), pp.
145
163
.
51.
LAMMPS Users Manual
,
2003
,
Sandia National Laboratories
,
Albuquerque, NM
.
52.
Tadmor
,
E. B.
, and
Miller
,
R. E.
,
2011
,
Modeling Materials: Continuum, Atomistic and Multiscale Techniques
,
Cambridge University Press
,
Cambridge
.
53.
Banfill
,
P. F. G.
,
2006
, “
Rheology of Fresh Cement and Concrete
,”
Rheol. Rev.
,
2006
, pp.
61
130
.
54.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With Ovito–the Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
55.
Lipton
,
R.
, and
Avellaneda
,
M.
,
1990
, “
Darcy’s Law For Slow Viscous Flow Past a Stationary Array of Bubbles
,”
Proc. R. Soc. Edinb. Sec. A Math.
,
114
(
1–2
), pp.
71
79
.
56.
Lipton
,
R.
, and
Vernescu
,
B.
,
1994
, “
Homogenisation of Two-Phase Emulsions
,”
Proc. R. Soc. Edinb. Sec. A Math.
,
124
(
6
), pp.
1119
1134
.
57.
Gao
,
T.
,
Hu
,
H. H.
, and
Castañeda
,
P. P.
,
2012
, “
Shape Dynamics and Rheology of Soft Elastic Particles in a Shear Flow
,”
Phys. Rev. Lett.
,
108
(
5
), p.
058302
.
58.
Gao
,
T.
, and
P. P.
Castañeda
,
2011
, “
Rheology of a Suspension of Elastic Particles in a Viscous Shear Flow
,”
J. Fluid. Mech.
,
687
, pp.
209
237
.
59.
Avazmohammadi
,
R.
, and
Castañeda
,
P. P.
,
2016
, “
Macroscopic Rheological Behavior of Suspensions of Soft Solid Particles in Yield Stress Fluids
,”
J. Nonnewton Fluid. Mech.
,
234
, pp.
139
161
.
60.
Christoffersen
,
J.
,
Mehrabadi
,
M.
, and
Nemat-Nasser
,
S.
,
1981
, “
A Micromechanical Description of Granular Material Behavior
,”
J. Appl. Mech.
,
48
(
2
), pp.
339
344
.
61.
Dayal
,
K.
, and
James
,
R. D.
,
2012
, “
Design of Viscometers Corresponding to a Universal Molecular Simulation Method
,”
J. Fluid. Mech.
,
691
, pp.
461
486
.
62.
Gauß
,
C. F.
,
1876
, “
Besprechung Des buchs von la seeber: Untersuchungen uber die eigenschaften der positiven ternaren quadratischen formen usw
,”
Gottingensche Gelehrte Anzeigen
,
2
, pp.
188
196
.
63.
Song
,
C.
,
Wang
,
P.
, and
Makse
,
H. A.
,
2008
, “
A Phase Diagram for Jammed Matter
,”
Nature
,
453
(
7195
), p.
629
.
You do not currently have access to this content.