This review article deals with the random excitation of nonlinear strings and suspended cables in air and fluid flow. For strings and 1D cables, the system dynamics is governed by different forms of Duffing oscillator. A brief review is devoted to the stochastic excitation of a Duffing oscillator. Under random excitation, this oscillator may or may not possess multiple solutions depending on the excitation bandwidth and level. One may be interested in estimating response statistics, first passage problem, and power spectral density. Particular attention is given to the complex response phenomena associated with increasing the spectral density level of excitation. The numerical results of the problem of nonlinear modal interaction in suspended cables will be discussed in the neighborhood of multiple internal resonance conditions. For a unimodal response, the linear theory fails to predict nonzero mean response and underestimates the mean square response under white noise excitation. Complex response phenomena such as “on-off” intermittency, energy transfer, and stochastic bifurcation are reviewed. The dynamic behavior of suspended cables in still air is different from that in flowing fluid or severe wind current due to the action of vortices, fluid normal forces, added fluid inertia force, and fluid drag force. Aeolian and galloping vibration of suspended cables in air and their dynamics in fluid flow are discussed, together with the influence of dynamic tension. In the absence of external excitation, the action of fluid forces induces vibration to the cable. The dynamics of cables subjected to steady and random fluid flow is reviewed for mooring systems. Depending on the flow speed, the cable may experience divergence or flutter similar to the case of aeroelastic structures. While the deterministic theory of strings and cables has reached an advanced stage, the reader will realize that these systems need further investigations under random excitations. There are 297 references cited in this review article.

1.
Rega
G
(
2004
),
Nonlinear dynamics of suspended cables, Part I: Modeling and analysis
,
Appl. Mech. Rev.
57
,
443
478
.
2.
Rega
G
(
2004
),
Nonlinear dynamics of suspended cables, Part II: Deterministic phenomena
,
Appl. Mech. Rev.
57
,
479
514
.
3.
Miles
JW
(
1965
),
Stability of forced oscillations of a vibrating string
,
J. Acoust. Soc. Am.
37
,
855
861
.
4.
Miles
JW
(
1984a
),
Resonant non-planar motion of a stretched string
,
J. Acoust. Soc. Am.
75
,
1505
1510
.
5.
Miles
JW
(
1984b
),
Resonant motion of a spherical pendulum
,
Physica D
11
,
309
323
.
6.
Miles
JW
(
1984c
),
Internally resonance surface waves in a circular cylinder
,
J. Fluid Mech.
149
,
1
14
.
7.
Miles
JW
(
1984d
),
Resonantly forced surface waves in a circular cylinder
,
J. Fluid Mech.
149
,
15
31
.
8.
Lin YK (1967), Probabilistic Theory of Struct Dynamics, McGraw-Hill, New York.
9.
Ibrahim RA (1985), Parametric Random Vibration, Wiley, New York.
10.
Roberts JB and Spanos PD (1990), Random Vibration and Statistical Linearization, Wiley, New York.
11.
Jordan DW and Smith P (1987), Non-linear Ordinary Differential Equations, 2nd Edition, Oxford Univ Press, Oxford.
12.
Guckenheimer J and Holmes P (1983), Non-linear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.
13.
Lyon
RH
,
Heckl
M
, and
Hazelgrove
CB
(
1961
),
Response of hard-spring oscillator to narrow-band excitation
,
J. Acoust. Soc. Am.
33
,
1404
1411
.
14.
Richard
K
and
Anand
GV
(
1983
),
Non-linear resonance in string narrow-band random excitation, Part I: Planar resonance and stability
,
J. Sound Vib.
86
,
85
98
.
15.
Davies
HG
and
Nandall
D
(
1986
),
Phase plane for narrow band random excitation of a Duffing oscillator
,
J. Sound Vib.
104
(
2
),
277
283
.
16.
Dimentberg
MF
(
1971
),
Oscillations of a system with non-linear cubic characteristic under narrow-band random excitation
,
Mech. Solids
6
(
2
),
142
146
.
17.
Dimentberg
MF
(
1980
),
Oscillations of a system with non-linear stiffness under simultaneous external and parametric random excitations
,
Mech. Solids
15
(
5
),
42
45
.
18.
Lennox
WC
and
Kuak
YC
(
1976
),
Narrow band excitation of a non-linear oscillator
,
ASME J. Appl. Mech.
43
,
340
344
.
19.
Kapitaniak
T
(
1985
),
Stochastic response with bifurcation on non-linear Duffing oscillators
,
J. Sound Vib.
102
(
3
),
440
441
.
20.
Davies
HG
, and
Liu
Q
(
1990
),
The response envelope probability density function of a Duffing oscillator with random narrow band excitation
,
J. Sound Vib.
139
,
1
8
.
21.
Iyengar
RN
(
1988
),
Stochastic response and stability of the Duffing oscillator under narrow-band excitation
,
J. Sound Vib.
126
,
255
263
.
22.
Koliopulos
PK
and
Bishop
SR
(
1993
),
Quasi-harmonic analysis of the behavior of hardening Duffing oscillator subjected to filtered white noise
,
Nonlinear Dyn.
4
,
279
288
.
23.
Fronzoni
L
,
Grigolini
P
,
Mannella
R
, and
Zambon
B
(
1985
),
The Duffing oscillator in the low-friction limit: Theory and analog simulation
,
J. Stat. Phys.
41
,
553
579
.
24.
Fang
T
and
Dowell
EH
(
1987a
),
Transient mean square response of randomly damped linear systems
,
J. Sound Vib.
113
,
71
79
.
25.
Davies
HG
and
Rajan
S
(
1988
),
Random superharmonic and subharmonic response: multiple time scaling of a Duffing oscillator
,
J. Sound Vib.
126
(
2
),
195
208
.
26.
Davies
HG
and
Liu
D
(
1992
),
On the narrow band random response distribution function of a nonlinear oscillator
,
Int. J. Non-Linear Mech.
104
(
2
),
277
283
.
27.
Roberts
JB
and
Spanos
PTD
(
1986
),
Stochastic averaging: An approximate method of solving random vibration problems
,
Int. J. Non-Linear Mech.
21
(
2
),
111
134
.
28.
Caughey
TK
(
1959
),
Response of a non-linear string to random loading
,
ASME J. Appl. Mech.
26
,
341
344
.
29.
Caughey
TK
(
1960
),
Random excitation of a loaded non-linear string
,
ASME J. Appl. Mech.
27
,
575
578
.
30.
Ahmadi
G
(
1980
),
Mean square response of a Duffing oscillator to a modulated white noise excitation by the generalized method of equivalent linearization
,
J. Sound Vib.
71
(
1
),
9
15
.
31.
Iyengar
RN
(
1989
),
Response of nonlinear systems to narrow band excitation
,
Struct. Safety
6
,
177
185
.
32.
Roberts
JB
(
1991
),
Multiple solutions generated by statistical linearization and their physical significance
,
Int. J. Non-Linear Mech.
26
,
945
959
.
33.
Iyengar RN (1992), Approximate analysis of nonlinear systems under narrow band random inputs, Nonlin Mech, IUTAM Symp, Turin, N Bellomo and F Casciati (eds), Springer Verlag, New York.
34.
Worden
K
, and
Manson
G
(
1998
),
Random vibrations of Duffing oscillator using the Volterra series
,
J. Sound Vib.
217
(
4
),
781
789
.
35.
Crandall
SH
(
1980
),
Non-Gaussian closure for random vibration of non-linear oscillations
,
Int. J. Non-Linear Mech.
15
(
4/5
),
303
313
.
36.
Rajan
S
and
Davies
H
(
1988
),
Multiple time scaling of the response of a Duffing oscillators to narrow-band random excitation
,
J. Sound Vib.
128
(
3
),
497
506
.
37.
Zhu
WQ
,
Lu
MQ
, and
Wu
QT
(
1993
),
Stochastic jump and bifurcation of a Duffing oscillator under narrow-band excitation
,
J. Sound Vib.
165
(
2
),
285
304
.
38.
Fang
T
and
Dowell
EH
(
1987b
),
Numerical simulation of jump phenomenon in stable Duffing systems
,
Int. J. Non-Linear Mech.
22
,
267
274
.
39.
Lee
J
(
1995
),
Improving the equivalent linearization technique for stochastic Duffing oscillators
,
J. Sound Vib.
186
(
5
),
846
855
.
40.
Koliopulos
PK
and
Langley
RS
(
1993
),
Improved stability analysis of the response of a Duffing oscillator under filtered white noise
,
Int. J. Non-Linear Mech.
28
(
2
),
145
155
.
41.
Weinstein
EM
and
Benaroya
H
(
1994
),
The Van Kampen expansion for the Fokker-Planck equation of a Duffing oscillator
,
J. Stat. Phys.
77
(
3/4
),
667
679
.
42.
Weinstein
EM
, and
Benaroya
H
(
1994
),
The Van Kampen expansion for the Fokker-Planck equation of a Duffing oscillator excited by colored noise
,
J. Stat. Phys.
77
(
3/4
),
681
690
.
43.
Wu
MM
,
Billah
KYR
, and
Shinozuka
M
(
1996
),
Analytical study of the Duffing oscillator excited by colored noise using a systematic adiabatic expansion
,
ASME J. Appl. Mech.
63
(
4
),
1027
1032
.
44.
Lyon
RH
(
1956
),
Response of strings to random noise fields
,
J. Acoust. Soc. Am.
28
(
3
),
391
398
.
45.
Lyon
RH
(
1960
),
On the vibration statistics of a randomly excited hard-spring oscillator
,
J. Acoust. Soc. Am.
32
(
6
),
716
719
.
46.
Lyon
RH
(
1960
),
Response of a non-linear string to random excitation
,
J. Acoust. Soc. Am.
32
(
8
),
953
960
.
47.
Lyon
RH
(
1960
),
Equivalent linearization of the hard spring oscillator
,
J. Acoust. Soc. Am.
32
,
1161
1162
.
48.
Spencer
Jr
BF
, and
Bergman
LA
(
1993
),
On the numerical solution of the Fokker-Planck equation for non-linear stochastic systems
,
Nonlinear Dyn.
4
(
4
),
357
372
.
49.
Mei C and Wentz KR (1982), Analytical and experimental non-linear response of rectangular panels to acoustic excitation, AIAA/ASME/ASCE/AHS 23rd Struct, Struct Dyn and Mat Conf, New Orleans LA, 514–520.
50.
Moyer ET Jr (1988), Time domain simulation of the response of geometrically non-linear panels subjected to random loading, Proc of 29th AIAA/ASME/ASCE/AHS Struct, Struct Dyn and Mat Conf, Paper No. 88-2236, 210–218.
51.
Reinhall
PG
and
Miles
RN
(
1989
),
Effect of damping and stiffness on the random vibration of non-linear periodic plates
,
J. Sound Vib.
132
(
1
),
33
42
.
52.
Miles
R
(
1989
),
An approximate solution for spectral response of Duffing’s oscillator with random input
,
J. Sound Vib.
132
(
1
),
43
49
.
53.
Ibrahim
RA
,
Lee
BH
, and
Afaneh
AH
(
1993
),
Structural modal multifurcation with internal resonance, Part II: Stochastic approach
,
ASME J. Vibr. Acoust.
115
(
2
),
193
201
.
54.
Morton
JB
and
Corrison
S
(
1970
),
Consolidated expansions for estimating the response of a randomly driven non-linear oscillator
,
J. Stat. Phys.
2
,
153
194
.
55.
Budgor
AB
(
1976
),
Studies in non-linear stochastic processes, I: Approximate solutions of non-linear stochastic differential equations by the method of statistical linearization
,
J. Stat. Phys.
15
(
5
),
355
375
.
56.
Budgor
AB
,
Lindenberg
K
, and
Shuler
KE
(
1976
),
Studies in non-linear stochastic processes, II: The Duffing oscillator revisited
,
J. Stat. Phys.
15
(
5
),
375
391
.
57.
Dykman
MI
,
Manella
R
,
McClintoch
PVE
,
Moss
F
, and
Soskin
SM
(
1988
),
Spectral density of fluctuations of a double-well Duffing oscillator driven by white noise
,
Phys. Rev. A
37
,
1303
1313
.
58.
Moshchuk
N
and
Ibrahim
RA
(
1996
),
Response statistics of ocean structures to nonlinear hydrodynamic loading, Part II: Non-Gaussian ocean waves
,
J. Sound Vib.
191
(
1
),
107
128
.
59.
Wittig LE (1971), Random vibration of a point-driven strings and plates, PhD thesis, MIT.
60.
Haines
CW
(
1967
),
Hierarchy methods for random vibrations of elastic strings and beams
,
J. Eng. Math.
1
,
293
305
.
61.
Boyce WC (1962), Random vibration of strings and bars, Proc of 4th US Natl Congress of Appl Mech, Berkeley, 77–85.
62.
Field
RV
,
Bergman
LA
, and
Hall
WB
(
1995
),
Computation of probabilistic stability measures for a controlled distributed parameter system
,
Probab. Eng. Mech.
10
,
181
192
.
63.
Milstead RM (1975), The Dynamic Stability of an Axially Moving Thin Elastic Strip Subjected to Random Parametric Excitation, PhD dissertation, Polytechnic Inst New York.
64.
Kozin
F
and
Milstead
RM
(
1979
),
The stability of a moving elastic strip subjected to random parametric excitation
,
ASME J. Appl. Mech.
46
(
2
),
404
410
.
65.
Anand
GV
(
1969
),
Large amplitude damped free vibration of a stretched string
,
J. Acoust. Soc. Am.
45
,
1089
1096
.
66.
Anand
GV
, and
Richard
K
(
1974
),
Non-linear response of a string to random excitation
,
Int. J. Non-Linear Mech.
9
,
251
260
.
67.
Ariaratnam
ST
(
1962
),
Response of a loaded non-linear string to random excitation
,
ASME J. Appl. Mech.
29
,
483
485
.
68.
Tagata
G
(
1978
),
Analysis of a Randomly Excited Non-linear Stretched String
,
J. Sound Vib.
58
(
1
),
95
107
.
69.
Tagata
G
(
1989
),
Non-linear string random vibration
,
J. Sound Vib.
129
(
3
),
361
384
.
70.
Irvine
HM
and
Caughey
TK
(
1974
),
The linear theory of free vibrations of a suspended cable
,
Proc. R. Soc. London, Ser. A
341
,
299
315
.
71.
Luongo
A
,
Rega
G
, and
Vestroni
F
(
1984
),
Planar non-linear vibrations of an elastic cable
,
Int. J. Non-Linear Mech.
19
(
1
),
39
52
.
72.
Takahashi
K
and
Konishi
Y
(
1987
),
Non-linear vibrations of cables in three dimensions, Part I: Non-linear free vibrations
,
J. Sound Vib.
118
(
1
),
69
84
.
73.
Murthy
GSS
and
Ramakrishna
BS
(
1965
),
Non-linear character of resonance in stretched strings
,
J. Acoust. Soc. Am.
38
,
461
471
.
74.
Anand
GV
(
1966
),
Non-linear resonance in stretched strings with viscous damping
,
J. Acoust. Soc. Am.
40
(
6
),
1517
1528
.
75.
Chang
WK
,
Ibrahim
RA
, and
Afaneh
AH
(
1996
),
Planar and non-planar non-linear dynamics of suspended cables under random in-plane loading, Part I: Single internal resonance
,
Int. J. Non-Linear Mech.
31
(
6
),
837
859
.
76.
Chang
WK
and
Ibrahim
RA
(
1997
),
Multiple internal resonances in suspended cables under random in-plane loading
,
Nonlinear Dyn.
12
,
275
303
.
77.
Ibrahim
RA
and
Chang
WK
(
1999
),
Stochastic excitation of suspended cables involving three simultaneous internal resonances using monte carlo simulation
,
Comput. Methods Appl. Mech. Eng.
168
,
285
304
.
78.
Horsthemke W and Lefever R (1989), Noise-induced transitions, Ch 8, Noise in Non-linear Dynamical Systems 2, 179–208, F Moss and PVE McClintock (eds), Cambridge Univ Press, Cambridge.
79.
Pomeau
Y
and
Manneville
P
(
1980
),
Intermittent transition to turbulence in dissipative dynamical systems
,
Commun. Math. Phys.
74
,
189
197
.
80.
Platt
N
,
Spiegel
EA
, and
Tresser
C
(
1993
),
On-off intermittency: A mechanism for bursting
,
Phys. Rev. Lett.
70
(
3
),
279
282
.
81.
Platt
N
,
Hammel
SM
, and
Heagy
JF
(
1994
),
Effects of additive noise on on-off intermittency
,
Phys. Rev. Lett.
72
(
22
),
3498
3501
.
82.
Heagy
JF
,
Platt
N
, and
Hammel
SM
(
1994
),
Characterization of on-off intermittency
,
Phys. Rev. E
E49
(
2
),
1140
1150
.
83.
Edwards
AT
and
Madeyski
A
(
1956
),
Progress report on the investigation of galloping of transmission line conductors
,
Trans AIEE
75
,
666
683
.
84.
Den Hartog
JP
(
1932
),
Transmission line vibration due to sleet
,
Trans AIEE
51
(
12
),
1074
1076
.
85.
Matsumoto M, Shigemura Y, Daito Y, and Kanamura T (1997), High speed vortex shedding vibration of inclined cables, Proc Int Seminar Cable Dynamics, Tokyo, 27–35.
86.
Scha¨fer
B
(
1984
),
Dynamical modeling of wind-induced vibrations of overhead lines
,
Int. J. Non-Linear Mech.
19
(
5
),
455
467
.
87.
Sahay
C
and
Dubey
RN
(
1987
),
Vibration of overhead transmission lines
,
Shock Vib. Dig.
19
(
5
),
11
15
.
88.
Stefanou
GD
(
1992
),
Dynamic response of tension cable structures due to wind loads
,
Comput. Struct.
43
(
2
),
365
372
.
89.
Matsumoto M, Knisely CW, Shiraishi N, Kitazawa M, and Saito T (1989), Inclined-cable aerodynamics, structural design, analysis and testing, Proc, ASCE Structural Congress, San Francisco.
90.
Hunt
JCR
and
Richards
DJW
(
1969
),
Overhead line oscillations and the effect of aerodynamic dampers
,
Proc. Inst. Electr. Eng.
116
,
1869
1874
.
91.
White
WN
,
Venkatasubramanian
S
,
Huang
CLD
, and
Lynch
PM
(
1992
),
Equations of motion for the torsional and bending vibrations of a standard cable
,
ASME J. Appl. Mech.
59
(
2
),
S224–S229
S224–S229
.
92.
Nigol
O
and
Buchan
PG
(
1981a
),
Conductor galloping, Part I: Den Hartog mechanism
,
IEEE Trans. Power Appar. Syst.
100
,
699
707
.
93.
Nigol
O
and
Buchan
PG
(
1981b
),
Conductor galloping, Part II: Torsional mechanism
,
IEEE Trans. Power Appar. Syst.
100
,
708
720
.
94.
Momomura
Y
,
Marukawa
H
, and
Ohkuma
T
(
1992
),
Wind-induced vibration of transmission line system
,
J. Wind. Eng. Ind. Aerodyn.
41–44
,
2035
2046
.
95.
Blevins
RD
and
Iwan
WD
(
1974
),
The galloping response of a two-degree-of-freedom system
,
ASME J. Appl. Mech.
41
,
1113
1118
.
96.
Yu
P
,
Shah
AH
, and
Popplewell
N
(
1992
),
Inertially coupled galloping of iced conductors
,
ASME J. Appl. Mech.
59
,
140
145
.
97.
Jones
KF
(
1992
),
Coupled vertical and horizontal galloping
,
J. Eng. Mech. Div.
118
(
1
),
92
107
.
98.
Yu
P
,
Desai
Y
,
Popplewell
N
, and
Shah
AH
(
1993a
),
Three-degree-of-freedom model for galloping, Part I: Formulation
,
J. Eng. Mech. Div.
119
(
12
),
2404
2425
.
99.
Yu
P
,
Desai
Y
,
Popplewell
N
, and
Shah
AH
(
1993b
),
Three-degree-of-freedom model for galloping, Part II: Solutions
,
J. Eng. Mech. Div.
119
(
12
),
2426
2448
.
100.
Cao DQ, Tucker RW, and Wang C (2001a), Aeroelastic stability of a Cosserat stay cable, Proc 4th Int Symp Cable Dynamics, 369–376.
101.
Versiebe
C
(
1998
),
Exciting mechanisms of rain-wind-induced vibrations
,
Struct. Eng. Int. (IABSE,Zurich,Switzerland)
2
,
112
117
.
102.
Bosdogianni
A
and
Olivari
D
(
1996
),
Wind- and rain-induced oscillations of cables of stayed bridges
,
J. Wind. Eng. Ind. Aerodyn.
64
,
171
185
.
103.
Sasaki S, Komoda M, Akiyama T, Oishi M, Kojima Y, Okumura T, and Maeda Y (1986), Developments of galloping control devices and operation records in Japan, CGRE Report 22-07.
104.
Cao DQ, Tucker RW, and Wang C (2001b), A stochastic approach to cable dynamics with moving rivulets, www.lancs.ac.uk/depts/mgg/cable.
105.
Tokoro
S
,
Komatsu
H
,
Nakasu
M
,
Mizuguchi
K
, and
Kasuga
A
(
2000
),
A study on wake-galloping employing full aeroelastic twin cable model
,
J. Wind. Eng. Ind. Aerodyn.
88
,
247
261
.
106.
Papazoglou
VJ
,
Mavrakos
SA
, and
Triantafyllou
MS
(
1990
),
Nonlinear cable response and model testing in the water
,
J. Sound Vib.
140
(
1
),
103
115
.
107.
Morison
D
,
O’brien
M
,
Johnson
J
, and
Schaaf
S
(
1950
),
The force exerted by surface waves on piles
,
Petr Trans AIME
189
,
149
154
.
108.
Triantafyllou
MS
(
1991
),
Dynamics of cables, towing cables, and mooring systems
,
Shock Vib. Dig.
23
,
3
8
.
109.
Burgess JJ (1992), Equations of motion of a submerged cable with bending stiffness, Proc Int Offshore Mech and Arctic Eng, Calgary, Canada, 283–290.
110.
Burgess JJ (1994), The deployment of an undersea cable system in sheared current, Proc BOSS’94, 327–334.
111.
Yamamoto C, Inoue M, Nagatomi O, Koterayama W, and Nakamura M (1997), Study on dynamics of submarine cable during laying and recovery, Proc of 16th Int Conf Offshore Mech Arctic Eng Part 1-B, 183–189.
112.
Zajac
EE
(
1957
),
Dynamics and kinematics of the laying and recovery of submarine cable
,
Bell Syst. Tech. J.
36
(
5
),
1129
1207
.
113.
Niedzwecki
JM
and
Thampi
SK
(
1991
),
Snap loading of marine cable systems
,
Appl. Ocean. Res.
13
,
210
218
.
114.
Schneider
L
,
Burton
Jr
LG
, and
Mahan
T
(
1965
),
Tow-cable snap loads
,
Marine Tech
2
,
43
49
.
115.
Bernitsas
MM
(
1982
),
A three-dimensional nonlinear large-deflection model for dynamic behavior of risers, pipelines, and cables
,
J. Ship Res.
26
(
1
),
59
64
.
116.
Triantfyllou MS, Bliek A, and Shin H (1985), Dynamic analysis as a tool for open sea mooring system analysis, Soc. Nav. Archit. Mar. Eng., Trans. of the Annual Meeting, New York.
117.
Milgram
JH
,
Triantfyllou
MS
,
Frimm
F
, and
Anagnostou
G
(
1988
),
Sea-keeping and extreme tensions in Offshore towing
,
Soc. Nav. Archit. Mar. Eng., Trans.
96
,
35
72
.
118.
Blevins RD (1977), Flow-Induced Vibration, Van Nostrand Reinhold, New York.
119.
Williams
HE
(
1975
),
Motion of a cable used as a mooring
,
J Hydronaut
9
(
7
),
107
118
.
120.
Graham
JR
(
1965
),
Mooring techniques in the open sea
,
Marine Tech
2
,
132
141
.
121.
Casarella
MJ
and
Parsons
M
(
1970
),
Cable systems under hydrodynamic loading
,
Mar. Technol. Soc. J.
4
,
27
44
.
122.
Choo
Y
and
Casarella
MJ
(
1973
),
A survey of analytical methods for dynamic simulation of cable-body systems
,
J Hydronaut
7
,
137
144
.
123.
Breslin
JP
(
1974
),
Dynamic forces exerted by oscillating cables
,
J Hydronaut
8
(
1
),
19
31
.
124.
Goodman
TR
and
Breslin
JP
(
1976
),
Static and dynamics of anchoring cables in waves
,
J Hydronaut
10
,
113
120
.
125.
Delmer
TN
,
Stephens
TC
, and
Coe
JM
(
1983
),
Numerical simulation of towed cables
,
Ocean Eng.
10
(
2
),
119
132
.
126.
Kirk
CL
,
Etok
EU
, and
Cooper
MT
(
1979
),
Dynamic and static analysis of a marine riser
,
Appl. Ocean. Res.
1
(
3
),
125
135
.
127.
Kim
WJ
and
Perkins
NC
(
2002
),
Linear vibration characteristics of cable-buoy systems
,
J. Sound Vib.
252
(
3
),
443
456
.
128.
Ablow
CM
and
Schechter
S
(
1983
),
Numerical simulation of undersea cable dynamics
,
Ocean Eng.
10
(
6
),
443
457
.
129.
Milinazzo
F
,
Wilkie
M
, and
Latchman
SA
(
1987
),
An efficient algorithm for simulating the dynamics of cable systems
,
Ocean Eng.
14
(
6
),
513
526
.
130.
Delmer
TN
,
Stephens
TC
, and
Tremills
JA
(
1988
),
Numerical simulation of cable-towed acoustic arrays
,
Ocean Eng.
15
(
6
),
511
548
.
131.
Bokaian
A
(
1994
),
Lock-in prediction of marine risers and tethers
,
J. Sound Vib.
175
(
5
),
607
623
.
132.
Huang S and Vassalos D (1995), Chaotic heave motion of marine cable-body systems, Proc ISOPE-Ocean Mining Symp, Tsukuba, Japan, 83–90.
133.
Inoue Y, Nakamura T, and Miyabe H (1991), On the dynamic tension of towline in ocean towing, ASME Offshore Mechanics and Arctic Eng 1(B), Chakrabart, et al. (eds) 547–553.
134.
Jain
PK
(
1980
),
A simple method of calculating the equivalent stiffness in mooring cables
,
Appl. Ocean. Res.
2
,
139
142
.
135.
Vaz
MA
and
Patel
MH
(
1995
),
Transient behavior of towed marine cables in two dimensions
,
Appl. Ocean. Res.
17
,
143
153
.
136.
Patel
MH
and
Vaz
MA
(
1995
),
The transient behavior of marine cables being laid—the two-dimensional problem
,
Appl. Ocean. Res.
17
,
245
258
.
137.
Scharm
JW
and
Reyle
SP
(
1968
),
A three-dimensional dynamic analysis of a towed system
,
J Hydraun
2
,
213
220
.
138.
Sanders
JV
(
1982
),
A three-dimensional dynamic analysis of a towed system
,
Ocean Eng.
9
,
483
499
.
139.
Vaz
MA
and
Patel
MH
(
2000
),
Three-dimensional behavior of elastic marine cables in sheared currents
,
Appl. Ocean. Res.
22
,
45
53
.
140.
Vaz
MA
,
Witz
JA
, and
Patel
MH
(
1997
),
Three-dimensional transient analysis of the installation of marine cables
,
Acta Mech.
124
,
1
26
.
141.
Huang
S
(
1994
),
Dynamic analysis of three-dimensional marine cables
,
Ocean Eng.
21
,
587
605
.
142.
Smith
RJ
and
MacFarlane
CJ
(
2001
),
Statics of a three-component mooring line
,
Ocean Eng.
28
,
899
914
.
143.
Ansari
KA
(
1980
),
Mooring with multi-component cable systems
,
ASME J. Energy Resour. Technol.
102
,
62
69
.
144.
Ansari KA and Khan NU (1986), The effect of cable dynamics on the station-keeping response of a moored offshore vessel, ASME Proc 5th Int OMAE Symp Vol III, JS Chung, et al. (eds), 514–521.
145.
Bernitsas
M
and
Garza-Rios
LO
(
1996
),
Effect of mooring line arrangement on the dynamics of spread mooring systems
,
ASME J. Offshore Mech. Arct. Eng.
118
,
7
20
.
146.
Brown
DT
(
1997
),
Convergence of nonlinear wave loading on a catenary moored floating production system design
,
Int Shipbuilding Prog
44
,
161
176
.
147.
Buckham
B
,
Nahon
M
,
Seto
M
,
Zhao
X
, and
Lambert
C
(
2003
),
Dynamics and control of towed underwater vehicle system, Part I: Model development
,
Ocean Eng.
30
,
453
470
.
148.
Campa G, Wilkie J, and Innocenti M (1996), Model-based robust control for a towed underwater vehicle, AIAA Guid Nav Control Conf, San Diego CA.
149.
Chen
X
,
Zhang
J
,
Johnson
P
, and
Irani
M
(
2001
),
Dynamic analysis of mooring lines with inserted springs
,
Appl. Ocean. Res.
23
,
277
284
.
150.
Dercksen A and Hoppe LFE (1994), On the analysis of mooring systems using synthetic ropes, Proc 26th Ann Offshore Tech Conf, 3, 255–263.
151.
Lindahl L and Sjo¨berg A (1983), Dynamic analysis of mooring cables, 2nd Int Symp Ocean Eng Ship Handling, 281–319.
152.
Ogawa
Y
(
1984
),
Fundamental analysis of deep sea mooring line in static equilibrium
,
Appl. Ocean. Res.
6
,
140
147
.
153.
Skop
RA
(
1988
),
Mooring Systems: A state-of-the-art review
,
ASME J Offshore Engrg Arctic Engrg
110
,
365
372
.
154.
Van den Boom HJJ (1985), Dynamic behavior of mooring lines, BOSS’85 Behavior of Offshore Structures, Delft, The Netherlands, 359–368.
155.
Grosenbaugh
MA
(
1996
),
On the dynamics of oceanographic surface moorings
,
Ocean Engrg
23
(
1
),
7
25
.
156.
Faltinsen OM (1990), Sea Loads on Ships and Offshore Structures, Cambridge Univ Press, Cambridge, UK.
157.
Driscoll
FR
,
Lueck
RG
, and
Nahon
M
(
2000a
),
The motion of a deep-sea remotely operated vehicle system, Part 1: Motion observations
,
Ocean Eng.
27
,
29
56
.
158.
Driscoll
FR
,
Lueck
RG
, and
Nahon
M
(
2000b
),
The motion of a deep-sea remotely operated vehicle system, Part 2: Analytical model
,
Ocean Eng.
27
,
57
76
.
159.
Driscoll
FR
and
Biggins
L
(
1993
),
Passive damping to attenuate snap loading on umbilical cables of remotely operated vehicles
,
IEEE Ocean Eng Soc Newsletter
28
,
17
22
.
160.
Banerjee
AK
and
Do
VN
(
1994
),
Deployment control of a cable connecting a ship to an underwater vehicle
,
J. Guid. Control Dyn.
17
(
6
),
1327
1332
.
161.
Inoue Y, Nakamura T, and Miyabe H (1991), On the dynamic tension of towline in ocean towing, ASME Offshore Mechanics and Arctic Eng 1(B), AK Chakrabart, et al. (eds) 547–553.
162.
Walton
TS
and
Polacheck
H
(
1960
),
Calculation of transient motion of submerged cables
,
Math of Comp
14
(
69
),
27
46
.
163.
Calkins
DE
(
1970
),
Faired towline hydrodynamics
,
J Hydronaut
4
,
113
119
.
164.
Cannon
TC
and
Genin
J
(
1972
),
Dynamical behavior of material damped flexible towed cable
,
Aeronaut Quart
23
,
109
120
.
165.
Calkins
DE
(
1979
),
Hydrodynamic analysis of a high-sped marine towed system
,
J Hydronaut
13
(
1
),
10
19
.
166.
Nair
S
and
Hegemier
G
(
1979
),
Stability of faired underwater towing cables
,
J Hydronaut
13
(
1
),
20
27
.
167.
Sanders
JV
(
1982
),
A three-dimensional dynamic analysis of a towed system
,
Ocean Eng.
9
(
5
),
483
499
.
168.
Hung
CY
and
Nair
S
(
1984
),
Planar towing and hydrodynamic stability of faired underwater cables
,
AIAA J.
22
,
1786
1790
.
169.
Chapman
DA
(
1982
),
Effects of ship motion on a neutrally stable towed fish
,
Ocean Eng.
9
(
3
),
189
220
.
170.
Chapman
DA
(
1984
),
A study of the ship-induced roll-yaw motion of a heavy towed fish
,
Ocean Eng.
11
(
6
),
627
654
.
171.
Chapman
DA
(
1984
),
Towed cable behavior during ship turning maneuvers
,
Ocean Eng.
11
(
4
),
327
361
.
172.
Bettles
RW
and
Chapman
DA
(
1985
),
The experimental verification of a towed body and cable dynamic response theory
,
Ocean Eng.
12
(
5
),
453
469
.
173.
Triantafyllou MS and Hover F (1990), Cable dynamics for tethered underwater vehicles, MIT Sea Grant Rept MITSG-90-6.
174.
Trahan
RE
Jr
,
Yeadon
DS
, and
Thiele
Jr
MG
(
1991
),
Towfish altitude computation using multi-path acoustic ranging
,
IEEE J. Ocean. Eng.
16
(
2
),
212
216
.
175.
Trahan
RE
Jr
,
Yeadon
DS
, and
Thiele
MG
Jr
(
1991
),
Optimal estimation of layback distance for marine towed cables
,
IEEE J. Ocean. Eng.
16
(
2
),
217
222
.
176.
Hover
FS
,
Grosenbaugh
MA
, and
Triantafyllou
MS
(
1994
),
Calculation of dynamic motions and tensions in towed underwater cables
,
IEEE J. Ocean. Eng.
19
(
3
),
449
457
.
177.
Griffin
OM
and
Vandiver
JK
(
1984
),
Vortex-induced strumming vibrations of marine cables with attached masses
,
ASME J. Energy Resour. Technol.
106
,
458
465
.
178.
Iwan
WD
and
Jones
NP
(
1987
),
On the vortex-induced oscillations of long structural elements
,
ASME J. Energy Resour. Technol.
109
,
161
167
.
179.
Huang
MC
and
Bauer
SY
(
1991
),
Vortex-induced loadings on taut cables with PET shrouds
,
J. Waters, Port, Coast, Ocean Eng.
117
,
174
178
.
180.
Peltzer
RD
and
Rooney
DM
(
1985a
),
Vortex shedding in a linear shear flow from a vibrating marine cable with attached bluff bodies
,
ASME J. Fluids Eng.
107
,
61
66
.
181.
Peltzer
RD
and
Rooney
DM
(
1985b
),
Near wake properties of a strumming marine cable: An experimental study
,
ASME J. Fluids Eng.
107
,
86
91
.
182.
Kim
YH
,
Vandiver
JK
, and
Holler
R
(
1986
),
Vortex-induced vibration and drag coefficients of long cables subjected to sheared flows
,
ASME J. Energy Resour. Technol.
108
,
77
83
.
183.
Schram
JW
and
Reyle
SP
(
1968
),
A three-dimensional dynamic analysis of a towed system
,
J Hydronaut
2
(
4
),
213
220
.
184.
Paul
B
and
Solar
A
(
1972
),
Cable dynamics and optimal towing strategies
,
Mar. Technol. Soc. J.
6
(
2
),
34
42
.
185.
Tein YSD, Cantrel JM, Marol P, and Huang K (1987), A rotational dynamic analysis procedure for turret mooring systems, Proc Offshore Tech Conf, Houston, Vol 3, 369–383.
186.
Begdah LM and Rask I (1987), Dynamic versus quasi-static design of catenary mooring system, Proc Offshore Tech Conf, Houston, Vol 3, 397–404.
187.
Taylor RJ, Wadsworth JP, Shields DR, and Ottsen H (1987), Design and installation of a mooring system in 2910 ft water, Proc Offshore Tech Conf, Houston, Vol 3, 385–396.
188.
Fylling IJ, Ottera GO, and Gottliebsen F (1987), Optimization and safety consideration in the design of stionkeeping systems, Proc PRADS ’87 Symp, Trondheim, 445.
189.
Triantafyllou
MS
,
Bliek
A
, and
Shin
H
(
1985
),
Dynamic analysis as a tool for open-sea mooring system design
,
Soc. Nav. Archit. Mar. Eng., Trans.
93
,
303
324
.
190.
Mavrakos SA, Papazoglou VJ, and Triantafyllou MS (1989), An investigation into the feasibility of deep water anchoring systems, Proc of 8th Int Offshore Mech Arctic Eng Conf, The Hague, Vol 1, 683–689.
191.
Mavrakos SA, Neos L, Papazoglou VJ, and Triantafyllou MS (1989), Systematic evaluation of the effect of submerged buoys’ size and location on deep water mooring dynamics, Proc PRADS ’89 Conf, Varna Bulgaria, Vol 3, 105.1–105.8.
192.
Papazoglou VJ, Mavrakos SA, Triantafyllou MS, and Brando PA (1990), Scaling procedure for mooring experiments, Proc 1st European Offshore Mech Symp, Trondheim, Norway, 490–498.
193.
Brando P, Mavrakos SA, Papazoglou VJ, and Triantafyllou MS (1991), Use of buoys to reduce static and dynamic tension in deep water mooring lines: A pilot study, Final Report to the EEC.
194.
Shin H and Triantafyllou MS (1989), Dynamic analysis of cable with an intermediate submerged buoy for offshore applications, Proc 8th Int Offshore Mech Arctic Conf, The Hague, Vol 1, 675–682.
195.
Papazoglou
VJ
,
Mavrakos
SA
, and
Triantafyllou
MS
(
1990
),
Nonlinear cable response and model testing in water
,
J. Sound Vib.
140
,
103
115
.
196.
Mavrakos SA, Papazoglou VJ, Triantafyllou MS, and Brando P (1991), Experimental and numerical study on the effect of buoys on deep water mooring dynamics, Proc of 1st Int Offshore Polar Engrg Conf, Edinburgh, Vol II, 243–251.
197.
Mavrakos
SA
,
Papazoglou
VJ
,
Papazoglou
VJ
, and
Hatjigeorgiou
J
(
1996
),
Deep water mooring dynamics
,
Marine Struct
9
,
181
209
.
198.
Sun Y (1996) Modeling and simulation of low tension oceanic cable/body deployment, PhD dissertation Univ of Connecticut.
199.
Sun
Y
and
Leonard
JW
(
1998
),
Dynamics of Ocean Cables with local low-tension regions
,
Ocean Eng.
25
(
6
),
443
463
.
200.
Leonard
JW
,
Sun
Y
, and
Palo
PA
(
1997
),
Time decrement simulation of expeditious oceanic cable-body installation
,
Comput. Struct.
64
(1–4),
453
459
.
201.
Idris
K
,
Leonard
JW
, and
Yim
SCS
(
1997
),
Coupled dynamics of tethered buoy systems
,
Ocean Eng.
24
(
5
),
445
464
.
202.
Gottlieb
O
and
Yim
SCS
(
1997
),
Nonlinear dynamics of a coupled surge-heave small-body ocean mooring system
,
Ocean Eng.
24
(
5
),
479
495
.
203.
Leonard
JW
,
Idris
K
, and
Yim
SCS
(
2000
),
Large angular motions of tethered surface buoys
,
Ocean Eng.
27
,
1345
1371
.
204.
Aamo
OM
and
Fossen
TI
(
2000
),
Finite element modeling of mooring lines
,
Math. Comput. Simul.
53
,
415
422
.
205.
Hu
HY
and
Jin
DP
(
2001
),
Nonlinear dynamics of a suspended traveling cable subject to transverse fluid excitation
,
J. Sound Vib.
239
(
3
),
515
529
.
206.
Anjo A, Yamasaki S, Matsubayashi Y, Nakayama Y, Otsuki A, and Fujimura T (1974), An experimental study of bundle galloping on the Kasatory-Yama test line for bulk power transmission, CIGRE Report 22004, Paris.
207.
Bossens
F
and
Preumont
A
(
2001
),
Active tendon control of cable-stayed bridges: A large-scale demonstration
,
J Earthquake Engrg Struct Dyn
30
,
961
979
.
208.
Chadha J (1974), A dynamic model investigation of conductor galloping, IEEE Winter Power Meeting, Paper 74 59-2.
209.
Chabart
O
and
Lilien
JL
(
1998
),
Galloping of electrical lines in wind tunnel facilities
,
J. Wind. Eng. Ind. Aerodyn.
74–76
,
967
976
.
210.
Diana
G
,
Bruni
S
,
Cheli
F
,
Fossati
F
, and
Manenti
A
(
1998
),
Dynamic analysis of the transmission line crossing
“Lago de Maraciabo,”
J. Wind. Eng. Ind. Aerodyn.
74–76
,
977
986
.
211.
Diana G, Cheli F, Manenti A, Nicolini P, and Tavano F (1989), Oscillation of bundle conductors in overhead lines due to turbulent wind, IEE PES Winter Meeting, Atlanta, GA.
212.
Hagedorn
P
,
Mitra
N
, and
Hadulla
T
(
2002
),
Vortex-excited vibrations in bundled conductors: A mathematical model
,
J. Fluids Struct.
16
(
7
),
843
854
.
213.
Lilien JL and Chabart O (1995), High voltage overhead lines: Three mechanism to avoid bundle galloping, Proc Int Symp Cable Dynamics, Paper 47, Liege, Belgium, 381–391.
214.
Lilien JL and Dubois H (1988), Overhead line vertical galloping on bundle configurations: Stability criteria and amplitude prediction, Proc IEE Overhead Line Design and Construction: Theory and Practice (up to 150 kv), 65–69.
215.
Nakamura
Y
(
1980
),
Galloping of bundled power line conductors
,
J. Sound Vib.
73
(
3
),
363
377
.
216.
Nigol O and Clarke GJ (1974), Conductor galloping and control based on torsional mechanism, IEEE Conf Paper C-74 116-2.
217.
Otsuki
A
and
Kajita
O
(
1975
),
Galloping phenomena of overhead transmission lines
,
Fujikura Tech Rev
7
,
33
46
.
218.
Rawlines CB (1981), Analysis of conductor galloping field observations—Single conductors, IEEE Paper 81 WM0538.
219.
Richardson AS, Martucelli JR, and Price WS (1963), Research study on galloping of electric power transmission lines, Paper 7, 1st Symp Wind Effects on Buildings and Structures, Teddington, England.
220.
Tunstall M and Koutselos LT (1988), Further studies of the galloping instability and natural ice accretions on overhead line conductors, 4th Int Conf Atmospheric Icing of Structures, Paris.
221.
Anderson
K
and
Hagedorn
P
(
1995
),
On the energy dissipation in spacer-dampers in bundled conductors of overhead transmission lines
,
J. Sound Vib.
180
,
539
556
.
222.
Hagedorn
P
(
1982
),
On the computation of damped wind excited vibrations of overhead transmission lines
,
J. Sound Vib.
83
,
253
271
.
223.
Diouron
T
,
Fujino
Y
, and
Abe
M
(
2003
),
Control of wind-induced self-excited oscillations by transfer of internal energy to higher modes of vibration: Part I & II
,
J. Eng. Mech. Div.
129
(
5
),
514
525
.
224.
Rawlins CB (1979), Galloping conductors, Chapter 4, EPRI Transmission Line Reference Book: Wind-Induced Conductor Motion, Electric Power Res Inst, Palo Alto CA.
225.
McComber
P
and
Paradis
A
(
1995
),
Simulation du Galop d’une forme bi-dimensionnelle d’une cable givre
,
Trans. Can. Soc. Mech. Eng.
19
(
2
),
75
92
.
226.
McComber
P
and
Paradis
A
(
1998
),
A cable galloping model for thin ice accretions
,
Atmos. Res.
46
,
13
25
.
227.
Miroshnik
R
(
2000
),
The probabilistic model of the dynamic of the cable under a short-circuit current
,
Comput. Methods Appl. Mech. Eng.
187
,
201
211
.
228.
Ford
GL
and
Srivastava
KD
(
1981
),
The probabilistic approach to substation bus short-circuit design
,
Electr. Power Syst. Res.
4
,
191
200
.
229.
Germani MD, Vainberg M, Ford GL, El-Kady MA, and Ganton RW (1990), Probabilistic short-circuit upgrading of station strain bys system, Ontario Hydra.
230.
El-Kady
MA
(
1983
),
Probabilistic short-circuit analysis by Monte-Carlo Simulation
,
IEEE Trans. Power Appar. Syst.
102
(
5
), pp.
1308
1316
.
231.
Roussel
P
(
1976
),
Numerical solution of static and dynamic equations of cables
,
Comput. Methods Appl. Mech. Eng.
9
, pp.
65
74
.
232.
Aranha
JAP
and
Pinto
MO
(
2001
),
Dynamic tension in risers and mooring lines: An algebraic approximation for harmonic excitation
,
Appl. Ocean. Res.
23
,
63
81
.
233.
Aranha
JAP
,
Pinto
MO
, and
Leite
AJP
(
2001
),
Dynamic tension of cables in a random sea: Analytic approximation for the envelope probability density function
,
Appl. Ocean. Res.
23
,
95
101
.
234.
Milgram
JH
(
1995
),
Extreme tensions in open ocean towing
,
J. Ship Res.
39
,
328
346
.
235.
Sarkar
A
and
Eatock Taylor
R
(
2000
),
Effects of mooring line drag damping on response statistics of vessels excited by first- and second-order wave forces
,
Ocean Eng.
27
,
667
686
.
236.
Huse E, and Matsumoto K (1989), Mooring line damping due to first- and second-order vessel motion, Proc Ofshore Tech Conf, Paper No 6137.
237.
Webster
WC
(
1995
),
Mooring-induced damping
,
Ocean Eng.
22
(
6
),
571
591
.
238.
Liu Y (1997), Dynamic analysis of mooring cables and their damping effect on the low-frequency motion of floating platforms, Thesis, Report series A:28, Department of Hydraulics, Chalmers Univ Tech, Gothenburg, Sweden.
239.
Sarkar
A
and
Manohar
CS
(
1996
),
Dynamic stiffness matrix of a general cable element
,
Arch. Appl. Mech.
66
,
315
325
.
240.
Sarkar
A
and
Eatock Taylor
R
(
2002
),
Dynamics of mooring cables in random seas
,
J. Fluids Struct.
16
(
2
),
193
212
.
241.
Liu
YG
and
Bergdahl
L
(
1997
),
Influence of current and seabed friction on mooring cable response: Comparison between time-domain and frequency domain analysis
,
J Eng Struct
19
(
11
),
945
953
.
242.
Clauss GF and Kuehnlein WL (1997), A new tool for sea-keeping tests: Nonlinear transient wave packets, Behavior of Offshore Structures BOSS’97, Delft, Vol 2, 269–285.
243.
Teigen P and Haver S (1997), The Heidrun TLP: Measured versus predicted response, Behavior of Offshore Structures BOSS’97, Delft, Vol 2, 319–331.
244.
Harland LA, Vugts JH, Jonathan P, and Taylor PH (1996), Extreme response of nonlinear dynamic systems using constrained simulations, 15th Conf Offshore Mech Arctic Engrg (OMAE), Florence, Italy, Vol I-A, 193–200.
245.
Sødahl NR (1991), Methods for design and analysis of flexible risers, PhD thesis, MTA-report, Div Marine Struct, Norwgian Inst Tech, Trondheim, Norway.
246.
Liu
Y
and
Bergdahl
L
(
1998
),
Extreme mooring cable tensions due to wave-frequency excitations
,
Appl. Ocean. Res.
20
,
237
249
.
247.
Chang
WK
,
Pilipchuk
V
, and
Ibrahim
RA
(
1997
),
Fluid flow-induced nonlinear vibration of suspended cables
,
Nonlinear Dyn.
14,
377
406
.
248.
Chang WK (1997), Nonlinear Mixed Mode Dynamics of Suspended Cables under Random Excitation and Fluid Flow Interaction, PhD dissertation Wayne State Univ, Detroit MI.
249.
Hikami
Y
(
1986
),
Rain vibrations of cable-stayed bridge
,
JAWE J Wind Engrg
27
,
17
28
. (in Japanese).
250.
Hikami
Y
and
Shiraishi
N
(
1987
),
Rain-induced vibrations of cables in cable-stayed bridges
,
J. Wind. Eng. Ind. Aerodyn.
29
,
471
478
.
251.
Matsumoto M (1998), Observed behavior of prototype cable vibration and its generation mechanism, Bridge Aerodynamics, A Larsen and S Esdahl (eds), Belkema, Rotterdam, 189–211.
252.
Main JA and Jones NP (1999), Full-scale measurements of stay cable vibration, Wind Engineering into the 21st Century, Balkema, Rotterdam, 963–970.
253.
Matsumoto
M
,
Saitoh
T
,
Kitazawa
M
,
Shirato
H
, and
Nishizaki
T
(
1995
),
Response characteristics of rain-wind induced vbration of stay-cables of cable-stayed bridges
,
J. Wind. Eng. Ind. Aerodyn.
57
,
323
333
.
254.
Matsumoto
M
,
Shiraishi
N
, and
Shirato
H
(
1992
),
Rain-wind induced vibration of cables of cable-stayed bridges
,
J. Wind. Eng. Ind. Aerodyn.
41–44
,
2011
2022
.
255.
Versiebe
C
and
Ruscheweyh
H
(
1998
),
Recent research results concerning the exciting mechanisms of rain-wind-induced vibrations
,
J. Wind. Eng. Ind. Aerodyn.
74–76
,
1005
1013
.
256.
Hikami
Y
(
1990
),
Rain- and wind-induced vibration
,
J Wind Engrg
27
,
40
40
.
257.
Hikami
Y
and
Shiraishi
N
(
1988
),
Rain-wind-induced vibrations of cables in cable-stayed bridges
,
J. Wind. Eng. Ind. Aerodyn.
30,
409
418
.
258.
Fujino
Y
,
Iwamoto
M
,
Ito
M
, and
Hikami
Y
(
1992
),
Wind tunnel experiments using 3D models and response prediction for a long-span suspension bridge
,
J. Wind. Eng. Ind. Aerodyn.
42
,
1333
1344
.
259.
Honda A, Yamanaka T, Fujiwara T, and Saito T (1995), Wind tunnel tests on rain-induced vibration on the stay-cable, Proc Int Symp Cable Dynamics, Liege Belgium, 255–262.
260.
Ohshima
K
,
Nakabayashi
M
,
Ogawa
K
, and
Sakai
Y
(
1998
),
Wind-induced oscillation of cable stayed bridge
,
JAWE J Wind Engrg
37
(
10
),
655
664
.
261.
Yoshizumi
F
and
Inoue
H
(
2002
),
An experimental approach on aerodynamic stability of a cable-stayed cantilever bridge
,
J. Wind. Eng. Ind. Aerodyn.
90
,
2099
2111
.
262.
Virlogeux
M
(
1999
),
Recent evolution of cable-stayed bridges
,
Engrg Struct
21
,
737
755
.
263.
Virlogeux M and Deroubaix B (1994), Cable-Stayed and Suspension Bridges, Vols 1 & 2, FIP-IABSE, France.
264.
Ruscheweyh HP (1999), The mechanism of rain-wind-induced vibration, Proc 10th Int Conf Wind Engrg, Vol 2, Balkema, Rotterdam, Denmark, 1041–1047.
265.
Wang
L
and
Xu
YL
(
2003
),
Wind-rain-induced vibration of cable: An analytical model (1
),
Int. J. Solids Struct.
40
,
1265
1280
.
266.
Xu
YL
and
Wang
LY
(
2003
),
Analytical study of wind-rain-induced cable vibration: SDOF model
,
J. Wind. Eng. Ind. Aerodyn.
91
,
27
40
.
267.
Matsumoto M, Ishizaki H, Kitazawa M, Aoki J, and Fuji D (1995), Cable aerodynamics and its stabilization, Proc Int Symp Cable Dynamics, Liege Belgium, 289–296.
268.
Versiebe
C
(
1998
),
Exciting mechanisms of rain-wind-induced vibrations
,
Struct. Eng. Int. (IABSE,Zurich,Switzerland)
2
,
112
117
.
269.
Matsumoto
M
,
Daito
Y
,
Kanamura
T
,
Shigemura
Y
,
Sakuma
S
, and
Ishizaki
H
(
1998
),
Wind-induced vibration of cables of cable-stayed bridges
,
J. Wind. Eng. Ind. Aerodyn.
74–76
,
1015
1027
.
270.
Ogawa
Y
,
Matsumoto
M
,
Kitazawa
M
, and
Yamasaki
T
(
1998
),
Aerodynamic stability of the tower of a long-spanned cable-stayed bridge (Higashi-Kobe Bridge
),
JAWE J Wind Engrg
37
(
10
),
501
510
.
271.
Yamaguchi H and Ito M (1995), Full-scale measurements and structural damping of cable-supported bridges, Proc Int Bridge Conf, Hong Kong, 557–564.
272.
Yoshimura T, Savage MG, and Tanaka H (1995), Wind-induced vibrations of bridge stay-cables, Proc Int Symp Cable Dynamics, Liege Belgium, 437–444.
273.
Cao DQ, Tucker RW, and Wang C (2001a), Aeroelastic stability of a Cosserat stay cable, Proc 4th Int Symp Cable Dynamics, 369–376.
274.
Allam
SM
and
Data
TK
(
2000
),
Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method
,
Eng. Struct.
22
,
1367
1377
.
275.
Yamaguchi H and Fujino Y (1998), Stayed-cable dynamics and its vibration control, Bridge Aerodynamics, A Larsen and S Esdah (eds), Balkema, Rotterdam, 235–254.
276.
Fujino
Y
,
Warnitchai
P
, and
Pacheco
BM
(
1993
),
Active stiffness control of cable vibration
,
ASME J. Appl. Mech.
60
,
984
953
.
277.
Yamagushi H and Dung NN (1992), Active wave control of sagged-cable vibration, Proc 1st Int Conf on Motion Vibration Control, 134–139.
278.
Gimsing HJ (1983), Cable-Supported Bridges, John Wiley, Chichester, England.
279.
Watson
SC
and
Stafford
D
(
1988
),
Cables in trouble
,
ASCE Civil Engrg
58
(
4
),
38
41
.
280.
Yoshimura T, Inoue A, Kaji K, and Savage M (1989), A study on the aerodynamic stability of the Aratsu bridge, Proc Canada-Japan Workshop on Bridge Aerodynamics, 41–50.
281.
Ito M, Fujino Y, Narita N, and Miyata (eds) (1991), Cable-Stayed Bridges: Their Recent Developments and Their Future, Elsevier, Amsterdam.
282.
Kovacs
I
(
1982
),
Zur frage der seilschwingungen und der seildampfung
,
Die Bautechnik
10
,
325
332
.
283.
Sulekh A (1990), Non-dimensionalized curves for modal damping in stay cables with viscous dampers, Master thesis, Univ of Tokyo.
284.
Pacheco
BM
,
Fujino
Y
, and
Sulekh
A
(
1993
),
Estimation curve for modal damping in stay cables with viscous damper
,
ASCE J. Struct. Eng.
119
(
6
),
1961
1979
.
285.
Krenk
S
(
2000
),
Vibration of a taut cable with an external damper
,
ASME J. Appl. Mech.
67
,
772
776
.
286.
Dumortier A (1990), Etude dynamique du comportement des haubans de pont, Travail de fin d’etudes, Univ of Liege, Faculty of Sciences Appl.
287.
Counasse C, Flahaux M, and Demars P (1990), Les haubans et leurs equipements, Extrait des Annales des Travaux Publics de Belgique, Pont de Wandre (2 eme partie), 1, 45–69.
288.
Lilien
JL
and
Pinto da Costa
A
(
1994
),
Vibration amplitudes caused by parametric excitation of cable stayed structures
,
J. Sound Vib.
174
(
1
),
69
90
.
289.
Royer-Carfagni
GF
(
2003
),
Parametric-resonance-induced cable vibrations in network cable-stayed bridges: A continuum approach
,
J. Sound Vib.
262
,
1191
1222
.
290.
Fujino
Y
and
Susumpow
T
(
1994
),
An experimental study on active control of planar cable vibration by axial support motion
,
Earthquake Eng. Struct. Dyn.
23
,
1283
1297
.
291.
Warnitchai
P
,
Fujino
Y
,
Pacheco
BM
, and
Agret
R
(
1993
),
An experimental study on active tendon control of cable-stayed bridges
,
Earthquake Eng. Struct. Dyn.
22
(
2
),
93
111
.
292.
Yang
JN
and
Giannopoulos
F
(
1979
),
Active control and stability of cable-stayed bridge
,
J. Eng. Mech. Div.
105
,
677
694
.
293.
Yang
JN
and
Giannopoulos
F
(
1979
),
Active control of two-cable-stayed bridge
,
J. Eng. Mech. Div.
105
,
795
805
.
294.
Achkire
Y
and
Preumont
A
(
1996
),
Active tendon control of cable-stayed bridges
,
Earthquake Eng. Struct. Dyn.
25
(
6
),
585
597
.
295.
Preumont
A
and
Achkire
Y
(
1997
),
Active damping of structures with guy cables
,
J. Guid. Control Dyn.
20
(
2
),
320
326
.
296.
Achkire
Y
,
Bossens
F
, and
Preumont
A
(
1998
),
Active damping and flutter control of cable-stayed bridges
,
J. Wind. Eng. Ind. Aerodyn.
74–76
,
913
921
.
297.
Johnson EA, Baker GA, Spencer BF, and Fujino Y (2004), Semi-active damping of stay cables neglecting sag, J. Eng. Mech. Div. 130 (in press).
You do not currently have access to this content.