Analysis of the Channeling Effect in Variable Porosity Media

[+] Author and Article Information
K. Vafai

Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210

J. Energy Resour. Technol 108(2), 131-139 (Jun 01, 1986) (9 pages) doi:10.1115/1.3231252 History: Received July 05, 1985; Revised April 16, 1986; Online October 22, 2009


A theoretical solution of the channeling effect is presented. The details of the channeling production are investigated in detail and an approximate method for obtaining the temperature distribution is presented. These results complete a theoretical solution of the channeling effect which has a number of different applications in energy-related problems, such as fixed-bed catalytic reactors, metal processing, underground coal gasification, oil shale, chemical-reaction engineering, drying and packed-bed heat exchangers. These differential permeability problems are also encountered in several energy resource extraction applications related to underground coal conversion, vertical modified in-situ (VSIS) oil shale retortion, steam flooding and oil recovery from tar sands. The method of matched asymptotic expansions is used to obtain the theoretical solution. The effects of using the singular perturbation solution in obtaining the temperature distribution are discussed. The existence and the concept of the triple momentum boundary layer in variable porosity media is analyzed in detail. The theoretical results are found to be in good agreement with the numerical and the available experimental results.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In