Two-Phase Flow in Piping Components

[+] Author and Article Information
P. Sookprasong, J. P. Brill, Z. Schmidt

The University of Tulsa, Petroleum Engineering Department, Tulsa, Okla. 74104

J. Energy Resour. Technol 108(3), 197-201 (Sep 01, 1986) (5 pages) doi:10.1115/1.3231264 History: Received May 19, 1986; Online October 22, 2009


Two-phase and single-phase pressure drop data were obtained for flow in horizontal 5.08-cm-dia pipe and piping components that included: a 9.14-m straight section of pipe; a gate valve; an elbow; a combination of elbow and gate valve separated by different pipe lengths; a globe valve; a swing check valve; and a union. Single-phase pressure drops produced by each component were used to establish the resistance coefficient, K . This resistance was then used to calculate two-phase pressure drops for each component using the Tremblay and Andrews homogeneous flow model. An acceptable agreement was found between measured and predicted pressure drops for all piping components studied. Pressure recovery lengths for individual components were found to be 10–50 pipe diameters, depending on flow rates. The resistance coefficient of two components separated by a distance less than the recovery length was always greater than the summation of each individual resistance coefficient.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In