An Examination of the Interaction Between Oil Sand Fragments in Hot Gaseous Streams

[+] Author and Article Information
M. A. Abdrabboh, G. A. Karim

Department of Mechanical Engineering, The University of Calgary, Calgary, Alberta, Canada

J. Energy Resour. Technol 109(2), 75-78 (Jun 01, 1987) (4 pages) doi:10.1115/1.3231328 History: Received December 01, 1985; Revised May 15, 1987; Online October 22, 2009


Clusters of preshaped oil sand spherical fragments were subjected to hot steady streams of air at low Reynolds number and constant stream temperature. A wide range of different combinations and arrangements of these fragments were employed involving up to twenty identical spherical samples that were either piled or set normal to the free stream of air and left exposed for various prescribed time periods at constant stream temperatures. The rates of mass loss due to fluid volatilization off these clusters during this exposure were then established experimentally and compared with the corresponding rates derived from the behavior of single spheres. This comparison showed, for the cases considered in this investigation, essentially no significant effect due to the interaction of the spherical samples with each other. The behavior of a single fragment can then form the basis for establishing the volatilization rate of the cluster. However, it was shown that the confinement of these clusters of fragments within a cylindrical tube placed axially along the heating stream produced appreciable effects on the rates of volatilization. The extent of the deviation from the single fragment model observed was then examined and a number of variables affecting it identified.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In