Energy Conversion/Systems

Thermodynamic Models for the Temperature and Pressure Variations Within Adiabatic Caverns of Compressed Air Energy Storage Plants

[+] Author and Article Information
R. Kushnir, A. Dayan

 Department of Fluid Mechanics and Heat Transfer,School of Mechanical EngineeringTel Aviv University, Tel Aviv 69978 Israel

A. Ullmann1

 Department of Fluid Mechanics and Heat Transfer,School of Mechanical EngineeringTel Aviv University, Tel Aviv 69978 Israelullmann@eng.tau.ac.il


Corresponding author.

J. Energy Resour. Technol 134(2), 021901 (Mar 19, 2012) (10 pages) doi:10.1115/1.4005659 History: Received September 01, 2010; Revised November 04, 2011; Published March 16, 2012; Online March 19, 2012

The temperature and pressure variation limits within the cavern of a compressed air energy storage (CAES) plant affect the compressor and turbine works, the required fuel consumption and therefore the overall plant performance. In the present work, the thermodynamic response of adiabatic cavern reservoirs to charge/discharge cycles of CAES plants are studied. Solutions for the air cavern temperature and pressure variations were derived from the mass and energy conservation equations, and applied to three different gas state equations, namely, ideal, real, and a self-developed simplified gas models. Sensitivity analyses were conducted to identify the dominant parameters that affect the storage temperature and pressure fluctuations. It is demonstrated that a simplified gas model can adequately represent the air thermodynamic properties. The stored air maximal to minimal temperature and pressure ratios were found to depend primarily on, both the ratio of the injected to the initial cavern air mass, and the reservoir mean pressure. The results also indicate that the storage volume is highly dependent on the air maximum to minimum pressure ratio. Its value should preferably be in between 1.2 and 1.8, where the exact selection should account for design and economic criteria.

Copyright © 2012 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.



Grahic Jump Location
Figure 1

Schematics of an underground air storage cavern: (a) during charge; (b) during discharge

Grahic Jump Location
Figure 2

The dimensionless air mass flow-rate at the cavern port during a CAES plant cycle

Grahic Jump Location
Figure 3

Maximum and minimum cavern temperature variation dependence on the cycles progression. (a) For mr  = 0.46 and Ti /T0  = 1.065; (b) for mr  = 0.36 and Ti /T0  = 1.09. (The dashed lines represent the steady periodic temperature ratios)

Grahic Jump Location
Figure 4

Temperature and pressure variations of the cavern air for T0  = 310 K, P0  = 45 bar, Ti  = 320 K, mr  = 0.35, t1 /tp  = 7/24, t2 /tp  = 14/24, t3 /tp  = 18/24. (a) During the first cycle; (b) during a steady periodic cycle.

Grahic Jump Location
Figure 5

Comparison of the calculated air temperature and pressure variations during a cycle for different thermodynamic models. T0  = 319.7 K, P0  = 60 bar, Ti  = 338 K, V = 300,000 m3 , m·c  = 236 kg/s, t1  = 7 h, t2  = 14 h, t3  = 21 h, tp  = 24 h.

Grahic Jump Location
Figure 6

Effects of mr on the cavern temperature ratios (a) and pressure ratios (b), for T0  = 300 K, P0  = 40 bar, Ti /T0  = 1.07

Grahic Jump Location
Figure 7

Effects of mr on the cavern temperature ratios (a) and pressure ratios (b), for T0  = 300 K, Ti /T0  = 1.07, and at different P0 ’s

Grahic Jump Location
Figure 8

The dimensionless storage volume dependence on the storage pressure ratio for T0  = 300 K, P0  = 40 bar, Ti /T0  = 1.07



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In