Technical Brief

Retrofit of a Bubbling Fluidized Bed Pilot Plant From Air Combustion to Oxyfuel Combustion

[+] Author and Article Information
Gabriel M. Faé Gomes

Department of Process Engineering,
Fundação de Ciência e Tecnologia do Estado
Rio Grande do Sul (CIENTEC),
2277 Indústria Avenue,
Cachoeirinha/RS/94930-230, Brazil;
e-mail: gabriel-gomes@cientec.rs.gov.br

Antônio C. F. Vilela

Universidade Federal do Rio Grande do Sul (UFRGS),
Bento Gonçalves Avenue,
9500 – Posto Alegre,/RS,
Setor 6
Centro de Tecnologia
Sala 222 03306-000, Brazil
e-mail: vilela@ufrgs.br

Guilherme P. da Silva Priebe

Fundação de Ciência e Tecnologia do Estado
Rio Grande do Sul (CIENTEC),
2277 Indústria Avenue,
Cachoeirinha/RS 94930-230, Brazil
e-mail: guilherme-priebe@cientec.rs.gov.br

Leandro Dalla Zen

Fundação de Ciência e Tecnologia do Estado
Rio Grande do Sul (CIENTEC),
2277 Indústria Avenue,
Cachoeirinha/RS 94930-230, Brazil
e-mail: dallazen@cientec.rs.gov.br

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received December 26, 2013; final manuscript received October 16, 2014; published online November 7, 2014. Assoc. Editor: Kevin M. Lyons.

J. Energy Resour. Technol 137(3), 034501 (May 01, 2015) (7 pages) Paper No: JERT-13-1348; doi: 10.1115/1.4028861 History: Received December 26, 2013; Revised October 16, 2014; Online November 07, 2014

When using fluidized bed in oxyfuel combustion, process parameters must be adjusted to maintain combustion and control air leakage into the system as there are important changes in gases properties, flow, and temperature. In this sense, this work makes a description of the retrofit of air combustion to oxyfuel combustion in a 0.25 MWth bubbling fluidized pilot plant. Process parameters were analyzed and mass and energy balances were developed to compare air and oxyfuel combustion. Air leakage and fluidization showed to be important to control when proceeding transition to oxyfuel combustion and temperature increase was consequence of radiation mechanism changes.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Hustad, C. W., 2009, “Deployment of Low and Zero Emission Fossil Fuel Power Generation in Emerging Niche Markets,” ASME TURBO EXPO 2008: Power for Land, Sea and Air, Berlin, Germany, June 9–13, pp. 397–409.
Scheffknecht, G., Al-Makhadmeh, L., Schnell, U., and Maier, J., 2011, “Oxy-Fuel Coal Combustion—A Review on the Current State-of-the-Art,” Int. J. Greenhouse Gas Control, 5S(5), pp. S16–S35. [CrossRef]
Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., and Jensen, A. D., 2011, “Oxy-Fuel Combustion of Solid Fuels,” Prog. Energy Combust. Sci., 36(5), pp. 581–625. [CrossRef]
Wall, T. F., 2007, “Combustion Processes for Carbon Capture,” Proc. Combust. Inst., 31(1), pp. 31–47. [CrossRef]
Kather, A., and Kownatzki, S., 2009, “The Oxycoal Process With Cryogenic Oxygen Supply,” Die Naturwissenschaften, 96(9), pp. 993–1010. [CrossRef] [PubMed]
Preusche, R., Böhlmann, S., Ecke, H., and Gampe, U., 2011, “Comparison of Data-Based Methods for Monitoring of Air Leakages Into Oxyfuel Power Plants,” Int. J. Greenhouse Gas Control, 5S(5), pp. S186–S193. [CrossRef]
Saxena, S. C., Srivastava, K. K., and Vadivel, R., 1989, “Experimental Techniques for the Measurement of Radiative and Total Heat Transfer in Gas Fluidized Beds: A Review,” Exp. Therm. Fluid Sci., 2(3), pp. 350–364. [CrossRef]
Dhodapkar, S., Zaçtash, A., and Klinzing, G., 2012, “A Primer on Gas-Solids Fluidization,” Chem. Eng, pp. 38–47. Available at: http://www.chemengonline.com/technical_and_practical/9573.html
Romeo, L. M., Díez, L. I., Guedea, I., Bolea, I., Lupiáñez, C., González, A., Pallarés, J., and Teruel, E., 2011, “Design and Operation Assessment of an Oxyfuel Fluidized Bed Combustor,” Exp. Therm. Fluid Sci., 35(3), pp. 477–484. [CrossRef]
Kuo, J. T., Hsu, W. S., and Yo, T. C., 1997, “Effect of Air Distribution on Solid Fuel Bed Combustion,” ASME J. Energy Resour. Technol., 119(2), pp. 120–128. [CrossRef]
Guedea, I., Bolea, I., Lupiáñez, C., Cortés, N., Teruel, E., Pallarés, J., Díez, L. I., and Romeo, L. M., 2011, “Control System for an Oxy-Fuel Combustion Fluidized Bed With Flue Gas Recirculation,” Energy Proc., 4, pp. 972–979. [CrossRef]
Czakiert, T., Bis, Z., Muskala, W., and Nowak, W., 2006, “Fuel Conversion From Oxy-Fuel Combustion a Circulating Fluidized Bed,” Fuel Proc. Technol., 87(6), pp. 531–538. [CrossRef]
Romeo, L. M., Guedea, I., Díez, L. I., and Palláres, J., 2011, “Influence of O2/CO2 Mixtures on the Fluid-Dynamics of an Oxy-Fired Fluidized Bed Reactor,” Chem. Eng. J., 178, pp. 129–137. [CrossRef]
Scala, F., and Chirone, R., 2010, “Fluidized Bed Combustion of Single Coal Char Particles at High CO2 Concentration,” Chem. Eng. J., 165(3), pp. 902–906. [CrossRef]
Fry, A., Adams, B., Paschedag, A., Kazalski, P., Carney, C., Oryshchyn, D., Woodside, R., Gerdemann, S., and Ochs, T., 2011, “Principles for Retrofitting Coal Burners for Oxy-Combustion,” Int. J. Greenhouse Gas Control, 5S(5), pp. S151–S158. [CrossRef]
Wu, Z., 2003, Understanding Fluidized Bed Combustion, IEA Clean Coal Technology, London, UK.
Faé Gomes, G. M., Vilela, A. C. F., Dalla Zen, L., and Osório, E., 2013, “Aspects for a Cleaner Production Approach for Coal and Biomass Use as a Decentralized Energy Source in Southern Brazil,” J. Cleaner Prod., 47, pp. 85–95. [CrossRef]
Gulyurtiu, I., Crujeira, T., Lopes, M. H., Abelha, P., Boavida, D., Seabra, J., Gonçalves, R., Sargaço, C., and Cabrita, I., 2006, “The Study of Combustion of Municipal Waste in a Fluidized Bed Combustor,” ASME J. Energy Resour. Technol., 128(2), pp. 123–128. [CrossRef]
Fox, R. W., and Mcdonald, A. T., 2001, Introduction to Fluid Mechanics, 5th ed., Wiley, NY.
Moran, M. J., and Shapiro, H. N., 2008, Principles of Thermodynamics for Engineering, 6th ed., Wiely, NY.
Anthony, E. J., Anderson, K., Carson, R., and Lau, I. T., 1997, “Petroleum Coke and Coal Start-Up Testing in Bubbling Fluidized Bed Combustors,” ASME J. Energy Resour. Technol., 119(2), pp. 96–102. [CrossRef]
Yang, L., Ran, J. Y., and Zhang, L., 2011, “Mechanism and Kinetics of Pyrolysis of Coal With High Ash and Low Fixed Carbon Contents,” ASME J. Energy Resour. Technol., 133(3), pp. 96–102. [CrossRef]
Kuivalainen, R., Lantto, J., Petra, P., Alvarez, J., Fernández, A., and Gómez, M., 2013, “Characterization of 30 MWth Circulating Fluidized Bed Boiler Under Oxy-Combustion Conditions,” 3rd Oxyfuel Combustion Conference, Ponferrada, Spain, Sept. 10–13, http://www.ieaghg.org/docs/General_Docs/OCC3/Secured%20presentations/P1_2_Characterization_of_30_MWth_Circulating_ Fluidized_Bed_Boiler_under_OxyCombustion_Conditions.pdf
Álvarez, I., Gutierrez, M., Pardo, J. M., Redondo, D., and Arteaga, V. M., 2013, “Experiences in Commissioning and Operation of CIUDEN's Technological Development Plant Under Oxycombustion Conditions,” 3rd Oxyfuel Combustion Conference, Ponferrada, Spain, September 2013. Available at: http://www.ieaghg.org/docs/General_Docs/OCC3/Secured%20presentations/p1_1.pdf
Ramos, J., Delgado, M. A., Navarrete, B., López, L. A., Ovalle, J., Isidoro, I., and Lockwood, F., 2013, “CO2 Compression & Purification Unit Integration in an Oxy-Combustion Plant,” 3rd Oxyfuel Combustion Conference, Ponferrada, Spain, September 2013. Available at: http://www.ieaghg.org/docs/General_Docs/OCC3/Secured%20presentations/P1_4.pdf
Fujimori, T., and Yamada, T., 2013, “Realization of Oxyfuel Combustion for Near Zero Emission Power Generation,” Proc. Combust. Inst., 34(2), pp. 2111–2130. [CrossRef]
Blarigan, A. V., Kozarac, D., Seiser, R., Cattolica, R., Chen, J. Y., and Dibble, R., 2013, “Experimental Study of Methane Fuel Oxycombustion in a Spark-Ignited Engine,” ASME J. Energy Resour. Technol., 136(1), p. 012203. [CrossRef]
Welty, J. R., Wicks, C. E., and Wilson, R. E., 1984, Fundamentals of Momentum, Heat and Mass Transfer, 3rd ed., Wiley, NY.
Hu, Y., and Yan, J., 2012, “Characterization of Flue Gas in Oxy-Coal Combustion Processes for CO2 Capture,” Appl. Energy, 90(1), pp. 113–121. [CrossRef]
Becher, V., Goanta, A., and Spliethoff, H., 2012, “Validation of Spectral Gas Radiation Models Under Oxyfuel Conditions—Part C: Validation of Simplified Model,” Int. J. Greenhouse Gas Control, 11, pp. 34–51. [CrossRef]
Yang, W. C., 2003, Handbook of Fluidization and Fluid-Particle Systems, 1st ed., CRC Press, Boca Raton, FL.
Chen, J. C., Grace, J. R., and Golriz, M. R., 2005, “Heat Transfer in Fluidized Beds: Design methods,” Powder Technol., 150(2), pp. 123–132. [CrossRef]
Reid, R. C., Prausnitz, J. M., and Poling, B. E., 2001, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, NY.


Grahic Jump Location
Fig. 1

Combustion and oxyfuel combustion pilot plant flowchart

Grahic Jump Location
Fig. 2

Control volume for mass and energy balances

Grahic Jump Location
Fig. 3

H values for each fan power



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In