Research Papers: Fuel Combustion

Effect of Biodiesel on Biofilm Biodeterioration of Linear Low Density Polyethylene in a Simulated Fuel Storage Tank

[+] Author and Article Information
Juan-Manuel Restrepo-Flórez

Faculty of Engineering
Department of Chemical and
Biochemical Engineering,
University of Western Ontario,
1165 Richmond Street,
London, ON N6A 3K7, Canada
e-mail: jrestre7@uwo.ca

Jeffery A. Wood

Faculty of Engineering
Department of Chemical and
Biochemical Engineering,
University of Western Ontario,
1165 Richmond Street,
London, ON N6A 3K7, Canada
e-mail: jeffery.alan.wood@gmail.com

Lars Rehmann

Faculty of Engineering
Department of Chemical and
Biochemical Engineering,
University of Western Ontario,
1165 Richmond Street,
London, ON N6A 3K7, Canada
e-mail: lrehmann@uwo.ca

Michael Thompson

Faculty of Engineering
Department of Chemical
McMaster University,
280 Main Street West,
Hamilton, ON L8S 4L7, Canada
e-mail: mthomps@mcmaster.ca

Amarjeet Bassi

Faculty of Engineering
Department of Chemical and
Biochemical Engineering,
University of Western Ontario,
1165 Richmond Street,
London, ON N6A 3K7, Canada
e-mail: abassi@uwo.ca

1Corresponding author.

Contributed by the Internal Combustion Engine Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received February 19, 2014; final manuscript received March 16, 2015; published online April 2, 2015. Assoc. Editor: Stephen A. Ciatti.

J. Energy Resour. Technol 137(3), 032211 (May 01, 2015) (6 pages) Paper No: JERT-14-1057; doi: 10.1115/1.4030107 History: Received February 19, 2014; Revised March 16, 2015; Online April 02, 2015

A simulated fuel storage tank was used to study biodeterioration of linear low-density polyethylene over 100 days. The system consisted of a water layer inoculated with microorganisms and a fuel layer of diesel/biodiesel. Biodeterioration was characterized measuring: biofilm growth, surface chemistry, crystallinity, and topography. Results showed greater accumulation of biofilm at higher biodiesel concentrations. Polyethylene biodegradation measured as consumption of oxidized species, increase in contact angle with water and reduction in electron donor groups was observed in all samples and was slightly higher in biodiesel-rich fuels. Topography changes and weight loss showed that microbial penetration in the polymer was superficial.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Sørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B., and Nygaard, S. D., 2011, “Microbial Growth Studies in Biodiesel Blends,” Bioresour. Technol., 102(8), pp. 5259–5264. [CrossRef] [PubMed]
Qiu, Z., Zhao, L., and Weatherley, L., 2010, “Process Intensification Technologies in Continuous Biodiesel Production,” Chem. Eng. Process.: Process Intensif., 49(4), pp. 323–330. [CrossRef]
Hasheminejad, M., Tabatabaei, M., Mansourpanah, Y., Khatami, M., and Javani, A., 2011, “Upstream and Downstream Strategies to Economize Biodiesel Production,” Bioresour. Technol., 102(2), pp. 461–468. [CrossRef] [PubMed]
Meher, L., Vidyasagar, D., and Naik, S., 2006, “Technical Aspects of Biodiesel Production by Transesterification—A Review,” Renewable Sustainable Energy. Rev., 10(3), pp. 248–268. [CrossRef]
Thompson, M. R., Mu, B., Ewaschuk, C. M., Cai, Y., Oxby, K. J., and Vlachopoulos, J., 2013, “Long Term Storage of Biodiesel/Petrol Diesel Blends in Polyethylene Fuel Tanks,” Fuel, 108, pp. 771–779. [CrossRef]
Maru, M. M., Lucchese, M. M., Legnani, C., Quirino, W. G., Balbo, A., Aranha, I. B., Costa, L. T., Vilani, C., de Sena, L. Á., Damasceno, J. C., dos Santos Cruz, T., Lidízio, L. R., Ferreira e Silva, R., Jorio, A., and Achete, C. A., 2009, “Biodiesel Compatibility With Carbon Steel and HDPE Parts,” Fuel Process. Technol., 90(9), pp. 1175–1182. [CrossRef]
Richaud, E., Flaconnèche, B., and Verdu, J., 2012, “Biodiesel Permeability in Polyethylene,” Polym. Test., 31(8), pp. 1070–1076. [CrossRef]
Klofutar, B., and Golob, J., 2007, “Microorganisms in Diesel and in Biodiesel Fuels,” Acta Chim. Slov., 54(3), pp. 744–748.
Gaylarde, C., Bento, F., and Kelley, J., 1999, “Microbial Contamination of Stored Hydrocarbon Fuels and Its Control,” Rev. Microbiol., 30(1), pp. 1–10. [CrossRef]
Restrepo-Flórez, J.-M., Bassi, A., Rehmann, L., and Thompson, M. R., 2013, “Effect of Biodiesel Addition on Microbial Community Structure in a Simulated Fuel Storage System,” Bioresour. Technol., 147, pp. 456–463. [CrossRef] [PubMed]
Albertson, A. C., Barensted, C., Karlsson, S., and Torbjorn, L., 1995, “Degradation Product Pattern and Morphology Changes as Means to Differentiate Abiotically and Biotically Aged Degradable Polyethylene,” Polymer, 36(16), pp. 3075–3083. [CrossRef]
Albersson, A., and Karlsson, S., 1990, “The Influence of Biotic and Abiotic Environments on the Degradation of Polyethylene,” Prog. Polym. Sci., 15(2), pp. 177–192. [CrossRef]
Santo, M., Weitsman, R., and Sivan, A., 2012, “The Role of the Copper-Binding Enzyme—Laccase—in the Biodegradation of Polyethylene by the Actinomycete Rhodococcus ruber,” Int. Biodeterior. Biodegrad., 84, pp. 204–210. [CrossRef]
Balasubramanian, V., Natarajan, K., Hemambika, B., Ramesh, N., Sumathi, C. S., Kottaimuthu, R., and Rajesh, V., 2010, “High-Density Polyethylene (HDPE)-Degrading Potential Bacteria From Marine Ecosystem of Gulf of Mannar, India,” Lett. Appl. Microbiol., 51(2), pp. 205–211. [CrossRef] [PubMed]
Hadad, D., Geresh, S., and Sivan, A., 2005, “Biodegradation of Polyethylene by the Thermophilic Bacterium Brevibacillus borstelensis,” J. Appl. Microbiol., 98(5), pp. 1093–1100. [CrossRef] [PubMed]
Sudhakar, M., Doble, M., Murthy, P. S., and Venkatesan, R., 2008, “Marine Microbe-Mediated Biodegradation of Low- and High-Density Polyethylenes,” Int. Biodeterior. Biodegrad., 61(3), pp. 203–213. [CrossRef]
Chiellini, E., Corti, A., and Swift, G., 2003, “Biodegradation of Thermally-Oxidized, Fragmented Low-Density Polyethylenes,” Polym. Degrad. Stab., 81(2), pp. 341–351. [CrossRef]
Volke-Sepulveda, T., Saucedo-Castañeda, G., Gutierrez-Rojas, M., Manzur, A., and Favela-Torres, E., 2002, “Thermally Treated Low Density Polyethylene Biodegradation by Penicillium pinophilum and Aspergillus niger,” J. Appl. Polym. Sci., 83(2), pp. 305–314. [CrossRef]
Artham, T., Sudhakar, M., Venkatesan, R., Madhavan, C., Murty, K. V. G. K., and Doble, M., 2009, “Biofouling and Stability of Synthetic Polymers in Sea Water,” Int. Biodeterior. Biodegrad., 63(7), pp. 884–890. [CrossRef]
Gilan, I., Hadar, Y., and Sivan, A., 2004, “Colonization, Biofilm Formation and Biodegradation of Polyethylene by a Strain of Rhodococcus Ruber,” Appl. Microbiol. Biotechnol., 65(1), pp. 97–104. [CrossRef] [PubMed]
Nowak, B., Pająk, J., Drozd-Bratkowicz, M., and Rymarz, G., 2011, “Microorganisms Participating in the Biodegradation of Modified Polyethylene Films in Different Soils Under Laboratory Conditions,” Int. Biodeterior. Biodegrad., 65(6), pp. 757–767. [CrossRef]
Fontanella, S., Bonhomme, S., Koutny, M., Husarova, L., Brusson, J.-M., Courdavault, J.-P., Pitteri, S., Samuel, G., Pichon, G., Lemaire, J., and Delort, A.-M., 2010, “Comparison of the Biodegradability of Various Polyethylene Films Containing Pro-Oxidant Additives,” Polym. Degrad. Stab., 95(6), pp. 1011–1021. [CrossRef]
Roy, P. K., Titus, S., Surekha, P., Tulsi, E., Deshmukh, C., and Rajagopal, C., 2008, “Degradation of Abiotically Aged LDPE Films Containing Pro-Oxidant by Bacterial Consortium,” Polym. Degrad. Stab., 93(10), pp. 1917–1922. [CrossRef]
Pramila, R., and Ramesh, K., 2011, “Biodegradation of Low Density Polyethylene (LDPE) by Fungi Isolated From Marine Water—A SEM Analysis,” African J. Microbiol Res., 5(28), pp. 5013–5018. [CrossRef]
Sivan, A., Szanto, M., and Pavlov, V., 2006, “Biofilm Development of the Polyethylene-Degrading Bacterium Rhodococcus ruber,” Appl. Microbiol. Biotechnol., 72(2), pp. 346–352. [CrossRef] [PubMed]
Koutny, M., Sancelme, M., Dabin, C., Pichon, N., Delort, A.-M., and Lemaire, J., 2006, “Acquired Biodegradability of Polyethylenes Containing Pro-Oxidant Additives,” Polym. Degrad. Stab., 91(7), pp. 1495–1503. [CrossRef]
Albertsson, A.-C., Andersson, S. O., and Karlsson, S., 1987, “The Mechanism of Biodegradation of Polyethylene,” Polym. Degrad. Stab., 18(1), pp. 73–87. [CrossRef]
Albertson, A., 1980, “The Shape of the Biodegradation Curve for Low and High Density Polyethenes in Prolonged Series of Experiments,” Eur. Polym. J., 16(7), pp. 623–630. [CrossRef]
Rojo, F., 2010, Handbook of Hydrocarbon and Lipid Microbiology, Springer, Berlin, Germany.
Karlsson, S., Ljungquist, O., and Albertsson, A.-C., 1988, “Biodegradation of Polyethylene and the Influence of Surfactants,” Polym. Degrad. Stab., 21(3), pp. 237–250. [CrossRef]
Farahani, M., Pagé, D. J. Y. S., Turingia, M. P., and Tucker, B. D., 2009, “Biodegradability and Degrading Microbes of Low-Density Polyethylene,” ASME J. Energy Resour. Technol., 131(4), p. 041801. [CrossRef]
Pegram, J. E., and Andrady, A. L., 1989, “Outdoor Weathering of Selected Polymeric Materials Under Marine Exposure Conditions,” Polym. Degrad. Stab., 26(4), pp. 333–345. [CrossRef]
Lobelle, D., and Cunliffe, M., 2011, “Early Microbial Biofilm Formation on Marine Plastic Debris,” Mar. Pollut. Bull., 62(1), pp. 197–200. [CrossRef] [PubMed]
Mumtaz, T., Khan, M. R., and Hassan, M. A., 2010, “Study of Environmental Biodegradation of LDPE Films in Soil Using Optical and Scanning Electron Microscopy,” Micron, 41(5), pp. 430–438. [CrossRef] [PubMed]
Orhan, Y., and Hanife, B., 2000, “Enhancement of Biodegradability of Disposable Polyethylene in Controlled Biological Soil,” Int. Biodeterior. Biodegrad., 45(1), pp. 49–55. [CrossRef]
Richard, J., and Vogel, T., 1999, “Characterization of a Soil Bacterial Consortium Capable of Degrading Diesel Fuel,” Int. Biodeterior. Biodegrad., 44(2–3), pp. 93–100. [CrossRef]
Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., and Svabic-Vlahovic, M., 2000, “A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation,” J. Microbiol. Methods, 40(2), pp. 175–179. [CrossRef] [PubMed]
Oss van, C. J., 2006, Interfacial Forces in Aqueous Media, CRC Press, Boca Raton.
Blaine, R. L., 2013, Determination of Polymer Crystallinity by DSC, TA Instruments, New Castle, DE.
Karcz, J., Bernas, T., Nowak, A., Talik, E., and Woznica, A., 2012, “Application of Lyophilization to Prepare the Nitrifying Bacterial Biofilm for Imaging With Scanning Electron Microscopy,” Scanning, 34(1), pp. 26–36. [CrossRef] [PubMed]
Tribedi, P., and Sil, A. K., 2013, “Low-Density Polyethylene Degradation by Pseudomonas SP. AKS2 Biofilm,” Environ. Sci. Pollut. Res. Int., 20(6), pp. 4146–4153. [CrossRef] [PubMed]
Pompilio, A., Piccolomini, R., Picciani, C., D'Antonio, D., Savini, V., and Di Bonaventura, G., 2008, “Factors Associated With Adherence to and Biofilm Formation on Polystyrene by Stenotrophomonas maltophilia: The Role of Cell Surface Hydrophobicity and Motility,” FEMS Microbiol. Lett., 287(1), pp. 41–47. [CrossRef] [PubMed]
Raghavan, D., and Torma, A. E., 1992, “DSC and FTIR Characterization of Biodegradation of Polyethylene,” Polym. Eng. Sci., 32(6), pp. 438–442. [CrossRef]
Manzur, A., Limón-González, M., and Favela-Torres, E., 2004, “Biodegradation of Physicochemically Treated LDPE by a Consortium of Filamentous Fungi,” J. Appl. Polym. Sci., 92(1), pp. 265–271. [CrossRef]
Manzur, A., Cuamatzi, F., and Favela, E., 1997, “Effect of the Growth of Phanerochaete chrysosporium in a Blend of Low Density Polyethylene and Sugarcane Bagasse,” J. Appl. Polym. Sci., 66(1), pp. 105–111. [CrossRef]
Muthukumar, T., Aravinthan, A., Lakshmi, K., Venkatesan, R., Vedaprakash, L., and Doble, M., 2011, “Fouling and Stability of Polymers and Composites in Marine Environment,” Int. Biodeterior. Biodegrad., 65(2), pp. 276–284. [CrossRef]
Watanabe, T., Ohtake, Y., Asabe, H., Murakami, N., and Furukawa, M., 2009, “Biodegradability and Degrading Microbes of Low-Density Polyethylene,” J. Appl. Polym. Sci., 111(1), pp. 551–559. [CrossRef]


Grahic Jump Location
Fig. 1

Experimental setup used in this study. Three phases are observed: a fuel phase, a water layer with microorganisms and the polymer slab of LLDPE.

Grahic Jump Location
Fig. 2

Biofilm growth on polyethylene surfaces at various biodiesel–diesel rations over 100 days of incubation

Grahic Jump Location
Fig. 3

Keto-carbonyl index of polyethylene samples aged in fuels with different biodiesel content up to 100 days

Grahic Jump Location
Fig. 4

Contact angle value with water on polyethylene surfaces aged in fuels with different biodiesel content up to 100 days

Grahic Jump Location
Fig. 5

(a) Control, (b) and (c) SEM images of biofilms growing on polyethylene, bacteria penetrating the surface of the polymer are indicated by arrows

Grahic Jump Location
Fig. 6

Change in basic component (electron donors) of the surface free energy calculated by using Young–Dupré equation for polyethylene samples aged in fuels with different biodiesel content up to 100 days



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In