Research Papers: Alternative Energy Sources

Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades

[+] Author and Article Information
Jesus Alejandro Franco

Universidad Autonoma de Queretaro,
Cerro de las Campanas S/N,
Queretaro, QRO 76010, Mexico
e-mail: jfranco15@alumnos.uaq.mx

Juan Carlos Jauregui

Universidad Autonoma de Queretaro,
Cerro de las Campanas S/N,
Queretaro, QRO 76010, Mexico
e-mail: jc.jauregui@uaq.mx

Manuel Toledano-Ayala

Universidad Autonoma de Queretaro,
Cerro de las Campanas S/N,
Queretaro, QRO 76010, Mexico
e-mail: toledano@uaq.mx

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received December 17, 2014; final manuscript received April 17, 2015; published online May 11, 2015. Assoc. Editor: Ryo Amano.

J. Energy Resour. Technol 137(5), 051206 (Sep 01, 2015) (8 pages) Paper No: JERT-14-1411; doi: 10.1115/1.4030445 History: Received December 17, 2014; Revised April 17, 2015; Online May 11, 2015

This paper presents a method for optimizing blade designs in smart rotors; the objective is to maximize power regardless of wind conditions. An extensive analysis of what is known as “smart blades,” from aeronautical solutions and helicopter rotors is provided. Moreover, trends in computational and experimental research are analyzed, an assessment and categorization of the options available for aerodynamic control surfaces are made. The study and analysis of its main components such as sensors, mechanisms of actuation, and materials are included. Advance research in this technology is presented as a potential solution for more efficient blade designs, and methods for reducing aerodynamic loads are discussed.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Hau, E., 2006, Wind Turbines: Fundamentals, Technologies, Application, Economics, 2nd ed., Springer, Berlin, Germany.
Arun Kumar, K. M., Strong, S., ElGammal, T., and Amano, R., 2015, “Self-Healing Tubing in Wind Turbine Blades,” ASME J. Energy Resour. Technol., 137(5), p. 051202. [CrossRef]
Belhadj, J., and Roboam, J., 2006, “Investigation of Different Methods to Control a Small Variable-Speed Wind Turbine With PMSM Drives,” ASME J. Energy Resour. Technol., 129(3), pp. 200–213. [CrossRef]
Wilson, D. G., Berg, D. E., Lobitz, D. W., and Zayas, J. R., 2008, “Optimized Active Aerodynamic Blade Control for Load Alleviation on Large Wind Turbines,” AWEA WINDPOWER 2008 Conference & Exhibition, Houston, TX, June 1–4, pp. 1–7.
Barlas, T. K., and van Kuik, G. A. M., 2007, “State of the Art and Perspectives of Smart Rotor Control for Wind Turbines,” J. Phys.: Conf. Ser., 75(1), p. 012080. [CrossRef]
Pechlivanoglou, G., 2012, “Passive and Active Flow Control Solutions for Wind Turbine Blades,” Ph.D. thesis, Technical University of Berlin, Berlin, Germany.
Barlas, T. K., and van Kuik, G. A. M., 2010, “Review of State of the Art in Smart Rotor Control Research for Wind Turbines,” Prog. Aerosp. Sci., 46(1), pp. 1–27. [CrossRef]
Zhang, D., Cross, P., Ma, X., and Li, W., 2013, “Improved Control of Individual Blade Pitch for Wind Turbines,” Sens. Actuators A, 198, pp. 8–14. [CrossRef]
Hassan, H. M., ElShafei, A. L., Farag, W. A., and Saad, M. S., 2012, “A Robust LMI-Based Pitch Controller for Large Wind Turbines,” Renewable Energy, 44(C), pp. 63–71. [CrossRef]
Battisti, L., Zanne, L., Dell'Anna, S., Dossena, V., Persico, G., and Paradiso, B., 2011, “Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel,” ASME J. Energy Resour. Technol., 133(3), p. 031201. [CrossRef]
Feszty, D., Gillies, E. A., and Vezza, M., 2004, “Alleviation of Airfoil Dynamic Stall Moments Via Trailing-Edge-Flap Flow Control,” AIAA J., 42(1), pp. 17–25. [CrossRef]
Gerontakos, P., and Lee, T., 2006, “Dynamic Stall Flow Control Via a Trailing-Edge Flap,” AIAA J., 44(3), pp. 469–480. [CrossRef]
Krzysiak, A., and Narkiewicz, J., 2006, “Aerodynamic Loads on Airfoil With Trailing-Edge Flap Pitching With Different Frequencies,” J. Aircr., 43(2), pp. 407–418. [CrossRef]
Lee, T., and Su, Y. Y., 2011, “Unsteady Airfoil With a Harmonically Deflected Trailing-Edge Flap,” J. Fluids Struct., 27(8), pp. 1411–1424. [CrossRef]
Guerrero, J. E., 2009, “Effect of Cambering on the Aerodynamic Performance of Heaving Airfoils,” J. Bionic Eng., 6(4), pp. 398–407. [CrossRef]
Miao, J.-M., and Ho, M.-H., 2006, “Effect of Flexure on Aerodynamic Propulsive Efficiency of Flapping Flexible Airfoil,” J. Fluids Struct., 22(3), pp. 401–419. [CrossRef]
Benkherouf, T., Mekadem, M., Oualli, H., Hanchi, S., Keirsbulck, L., and Labraga, L., 2011, “Efficiency of an Auto-Propelled Flapping Airfoil,” J. Fluids Struct., 27(4), pp. 552–566. [CrossRef]
Sofla, A. Y. N., Meguid, S. A., Tan, K. T., and Yeo, W. K., 2010, “Shape Morphing of Aircraft Wing: Status and Challenges,” Mater. Des., 31(3), pp. 1284–1292. [CrossRef]
Geissler, W., Dietz, G., and Mai, H., 2005, “Dynamic Stall on a Supercritical Airfoil,” Aerosp. Sci. Technol., 9(5), pp. 390–399. [CrossRef]
Diaconu, C. G., Weaver, P. M., and Mattioni, F., 2008, “Concepts for Morphing Airfoil Sections Using Bi-Stable Laminated Composite Structures,” Thin-Walled Struct., 46(6), pp. 689–701. [CrossRef]
Arrieta, A. F., Bilgen, O., Friswell, M. I., and Ermanni, P., 2013, “Modelling and Configuration Control of Wing-Shaped Bi-Stable Piezoelectric Composites Under Aerodynamic Loads,” Aerosp. Sci. Technol., 29(1), pp. 453–461. [CrossRef]
Aguirrebeitia, J., Avilés, R., Fernández, I., and Abasolo, M., 2013, “Kinematical Synthesis of an Inversion of the Double Linked Fourbar for Morphing Wing Applications,” Front. Mech. Eng., 8(1), pp. 17–32. [CrossRef]
Yuanyuan, H. E., and Shijun, G. U. O., 2012, “Modeling and Experiment of a Morphing Wing Integrated With a Trailing Edge Control Actuation System,” Chin. J. Mech. Eng., 25(2), pp. 248–254. [CrossRef]
Yang, W. C., Yang, J. T., and Wang, J., 2012, “Experimental Investigation on the Quasi-Steady Flow Separation Behaviors of a Variable Camber Wing,” Sci. China Phys. Mech. Astron., 42(5), pp. 531–537 [CrossRef].
Ahola, J., Makkoneni, T., Nevala, K., and Istoi, P., 2009, “Comparison of Position Control Algorithms of Embedded Shape Memory Alloy Actuators,” Proceedings of the IEEE International Conference on Mechatronics, Apr. 14–17, pp. 1–6.
Brailovski, V., Terriault, P., Georges, T., and Coutu, D., 2010, “SMA Actuators for Morphing Wings,” Phys. Procedia, 10, pp. 197–203. [CrossRef]
Coutu, D., Brailovski, V., and Terriault, P., 2010, “Optimized Design of an Active Extrados Structure for an Experimental Morphing Laminar Wing,” Aerosp. Sci. Technol., 14(7), pp. 451–458. [CrossRef]
Popov, A. V., Grigorie, L. T., and Botez, R. M., 2010, “Controller Optimization in Real Time for a Morphing Wing in a Wind Tunnel,” J. Aircr., 47(4), pp. 1346–1355. [CrossRef]
Wang, Q., Xu, Z., and Zhu, Q., 2013, “Structural Design of Morphing Trailing Edge Actuated by SMA,” Front. Mech. Eng., 8(3), pp. 268–275. [CrossRef]
Sosa, R., and Artana, G., 2006, “Steady Control of Laminar Separation Over Airfoils With Plasma Sheet Actuators,” J. Electrost., 64(7–9), pp. 604–610. [CrossRef]
Fu, X., Li, Y., Li, B., and Kwok, D. Y., 2009, “Drag Force Reduction on an Airfoil Via Glow Discharge Plasma-Based Control,” Eur. Phys. J., 171(1), pp. 195–204. [CrossRef]
Chopra, I., 2002, “Review of State of Art of Smart Structures and Integrated Systems,” AIAA J., 40(11), pp. 2145–2187. [CrossRef]
Baxevanou, C. A., Chaviaropoulos, P. K., Voutsinas, S. G., and Vlachos, N. S., 2008, “Evaluation Study of a Navier–Stokes CFD Aeroelastic Model of Wind Turbine Airfoils in Classical Flutter,” J. Wind Eng. Ind. Aerodyn., 96(8–9), pp. 1425–1443. [CrossRef]
Beyene, A., and Peffley, J., 2007, “A Morphing Blade for Wave and Wind Energy Conversion,” OCEANS Europe, June 18–21, pp. 1–6.
MacPhee, D., and Beyene, A., 2011, “A Flexible Turbine Blade for Passive Blade Pitch Control in Wind Turbines,” Proceedings of the Power Engineering and Automation Conference (PEAM), Vol. 1, Sept. 8–9, pp. 196–199.
Huang, D., and Wu, G., 2013, “Preliminary Study on the Aerodynamic Characteristics of an Adaptive Reconfigurable Airfoil,” Aerosp. Sci. Technol., 27(1), pp. 44–48. [CrossRef]
Supeni, E. E., Epaarachchi, J. A., Islam, M. M., and Lau, K. T., 2012, “Development of Smart Wind Turbine Blades,” Proceedings of the 8th Asian-Australasian Conference on Composite Materials, Nov. 6–8, pp. 1–6.
Qiao, Y., Han, J., Zhang, C., and Chen, J., 2012, “Modeling Smart Structure of Wind Turbine Blade,” Appl. Compos. Mater., 19(3–4), pp. 491–498. [CrossRef]
Nelson, R. C., Corke, T. C., and Othman, H., 2008, “A Smart Wind Turbine Blade Using Distributed Plasma Actuators for Improved Performance,” Proceedings of the 46th Aerospace Sciences Meeting, Reno, NV, Jan. 7–10, pp. 1–17.
Fischer, J., Weinzierl, G., Wagner, J., and Pechlivanoglou, G., 2012, “Development of a Flexible Trailing Edge Flap and System Integration Concept for Wind Turbine Blades,” Proceedings of the 1st German Wind Energy Conference DEWEK, Bremen, Germany, pp. 1–4.
Lackner, M. A., and van KuikGijs, A. M., 2010, “The Performance of Wind Turbine Smart Rotor Control Approaches During Extreme Loads,” ASME J. Sol. Energy Eng., 132(1), p. 011008. [CrossRef]
Wilson, D. G., Berg, D. E., Barone, M. F., Berg, J. C., Resor, B. R., and Lobitz, D. W., 2009, “Active Aerodynamic Blade Control Design for Load Reduction on Large Wind Turbines,” Proceedings of the European Wind Energy Conference & Exhibition 2009 ParcChanot, Marseille, France, pp. 1–10.
Grant, I., 2005, “Wind Turbine Blade Analysis Using the Blade Element Momentum Method,” Duncan University, School of Engineering, Durham University, Durham, NC. https://community.dur.ac.uk/g.l.ingram/download/wind_turbine_design.pdf


Grahic Jump Location
Fig. 1

Shape morphing tendencies [15]

Grahic Jump Location
Fig. 2

Smart blade concept [4]

Grahic Jump Location
Fig. 3

Rigid trailing edge [14]

Grahic Jump Location
Fig. 9

Rotating annular stream tube: notation [43]

Grahic Jump Location
Fig. 5

Rigid leading edge [19]

Grahic Jump Location
Fig. 4

Flexible trailing edge [16]

Grahic Jump Location
Fig. 11

NACA families, camber deformation

Grahic Jump Location
Fig. 12

Camber morphing as a function of wind velocity

Grahic Jump Location
Fig. 13

Airfoils sections deforming

Grahic Jump Location
Fig. 14

Search algorithm flow chart

Grahic Jump Location
Fig. 15

Deformable blade versus fixed blade

Grahic Jump Location
Fig. 16

(a) NACA 1112 @ 3 m/s, (b) NACA 3312 @ 5 m/s, and (c) NACA 6612 @ 8 m/s



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In