Research Papers: Energy Systems Analysis

Simulation of Adsorptive Storage of CO2 in Fixed Bed of MOF-5

[+] Author and Article Information
Rached Ben-Mansour

Mechanical Engineering Department,
Dhahran 34464, Saudi Arabia
e-mail: rmansour@kfupm.edu.sa

Bamidele Olufemi Eyitope

Mechanical Engineering Department,
Dhahran 34464, Saudi Arabia
e-mail: eyitope.bamidele@gmail.com

Mohammed A. Antar

Mechanical Engineering Department,
Dhahran 34464, Saudi Arabia
e-mail: antar@kfupm.edu.sa

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received February 14, 2015; final manuscript received July 6, 2015; published online September 23, 2015. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 138(1), 012001 (Sep 23, 2015) (12 pages) Paper No: JERT-15-1062; doi: 10.1115/1.4031451 History: Received February 14, 2015; Revised July 06, 2015

Adsorptive storage of CO2 in a fixed bed is studied numerically. The simulation of an adsorption process of CO2 on a fixed bed has been carried out to evaluate the capacity of metal-organic framework novel materials (MOF-5 also known as IRMOF1) for CO2 storage with varying feed gas pressure up to 50 bar and ambient temperature. We also have presented similar studies for activated carbon bed. The adsorption model has been validated by testing it against experimental data for adsorption storage characteristics of hydrogen on activated carbon. The mathematical model used to carry out the numerical simulations is a one-dimensional transient model accounting for mass, momentum, species, and energy transport including mass transfer and empirically based adsorption models. The developed model has been coded in matlab to carry out the presented simulations.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


The Guardian.com, 2014, “ Five Basic Antarctic Facts for Climate Change Skeptics,” antarctic-ship-stranding-delights-climate-change-sceptics @ www.theguardian.com
2014, “ U.S. Environmental Protection Agency (EPA),” index @ www.epa.gov
D'Alessandro, D. M. , and McDonald, T. , 2011, “ Toward Carbon Dioxide Capture Using Nanoporous Materials,” Pure Appl. Chem., 83(1), pp. 57–66.
GCEP, 2005, “ An Assessment of Carbon Capture Technology and Research Opportunities,” Global Climate and Energy Project, Stanford University, Stanford, CA.
Kothandaraman, A. , Nord, L. , Bolland, O. , Herzog, H. J. , and McRae, G. J. , 2009, “Comparison of Solvents for Post-Combustion Capture of CO2 by Chemical Absorption,” Energy Procedia, 1(1), pp. 1373–1380.
Mori, Y. , Masutani, S. M. , Nihous, G. C. , and Vega, L. A. , 1992, “ Pre-Combustion Removal of Carbon Dioxide From Natural Gas Power Plants and the Transition to Hydrogen Energy Systems,” ASME J. Energy Res. Technol., 114(3), pp. 221–226. [CrossRef]
Sanusi, Y. S. , Habib, M. A. , and Mokheimer, E. M. , 2015, “ Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emissions of Nonpremixed Swirl Stabilized Combustor,” ASME J. Energy Res. Technol., 137(3), p. 032203. [CrossRef]
Mokheimer, E. M. A. , Hussain, M. I. , Ahmed, S. , Habib, M. A. , and Al-Qutub, A. A. , 2015, “ On the Modelling of Steam Methane Reforming,” ASME J. Energy Res. Technol., 137(1), p. 012001. [CrossRef]
Alzahrani, F. M. , Sanusi, Y. S. , Vogiatzaki, K. , Ghomiem, A. F. , Habib, M. A. , and Mokheimer, E. M. , 2015, “ Evaluation of the Accuracy of Selected Syngas Chemical Mechanisms,” ASME J. Energy Res. Technol., 137(4), p. 042201. [CrossRef]
Habib, M. A. , Ahmed, P. , Ben-Mansour, R. , Mezghani, K. , Alam, Z. , Horn, Y. , and Ghoniem, A. F. , 2015, “ Experimental and Numerical Investigation of La2NiO4 Membranes for Oxygen Separation: Geometry Optimization and Model Validation,” ASME J. Energy Res. Technol., 137(3), p. 031102. [CrossRef]
Ben-Mansour, R. , Ahmed, P. , and Habib, M. A. , 2015, “ Simulation of Oxy-Fuel Combustion of Heavy Oil Fuel in a Model Furnace,” ASME J. Energy Res. Technol., 137(3), p. 032206. [CrossRef]
E. U. Press, 2008, “ Environmental Impact of Aviation,” Wikipedia, en.wikipedia.org/wiki/Environmental_impact_of_aviation
Li, J.-R. , Ma, Y. , McCarthy, M. C. , Sculley, J. , Yu, J. , Jeong, H.-K. , Balbuena, P. B. , and Zhou, H.-C. , 2011, “ Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks,” Coord. Chem. Rev., 255(15–16), pp. 1791–1823. [CrossRef]
Li, J.-R. , Sculley, J. , and Zhou, H.-C. , 2012, “ Metal-Organic Frameworks for Separations,” Chem. Rev., 112(2), pp. 869–932. [CrossRef] [PubMed]
CCDC, 2014, SupportSolution, Cambridge Crystallographic Data Centre, Cambridge, UK, www.ccdc.cam.ac.uk
Kuppler, R. J. , Timmons, D. J. , Fang, Q.-R. , Li, J.-R. , Makal, T. A. , Young, M. D. , Yuan, D. , Zhao, D. , Zhuang, W. , and Zhou, H.-C. , 2009, “ Potential Applications of Metal-Organic Frameworks,” Coord. Chem. Rev., 253(23–24), pp. 3042–3066. [CrossRef]
Zhao, D. , Yuan, D. , Yakovenko, A. , and Zhou, H.-C. , 2010, “ A NbO-Type Metal-Organic Framework Derived From a Polyyne-Coupled Di-Isophthalate Linker Formed In Situ,” Chem. Commun., 46(23), pp. 4196–4198. [CrossRef]
Xie, L.-H. , and Suh, M. P. , 2011, “ Flexible Metal-Organic Framework With Hydrophobic Pores,” Chemistry, 17(49), pp. 13653–13656. [CrossRef] [PubMed]
Yuan, D. , Zhao, D. , and Zhou, H.-C. , 2011, “ Pressure-Responsive Curvature Change of a ‘Rigid’ Geodesic Ligand in a (3,24)-Connected Mesoporous Metal-Organic Framework,” Inorg. Chem., 50(21), pp. 10528–10530. [CrossRef] [PubMed]
Coudert, F.-X. , 2010, “ The Osmotic Framework Adsorbed Solution Theory: Predicting Mixture Coadsorption in Flexible Nanoporous Materials,” Phys. Chem. Chem. Phys., 12(36), pp. 10904–10913. [CrossRef] [PubMed]
Yuan, D. , Getman, R. B. , Wei, Z. , Snurr, R. Q. , and Zhou, H.-C. , 2012, “ Stepwise Adsorption in a Mesoporous Metal-Organic Framework: Experimental and Computational Analysis,” Chem. Commun., 48(27), pp. 3297–3299. [CrossRef]
Zhao, D. , Yuan, D. , Krishna, R. , van Baten, J. M. , and Zhou, H.-C. , 2010, “ Thermosensitive Gating Effect and Selective Gas Adsorption in a Porous Coordination Nanocage,” Chem. Commun., 46(39), pp. 7352–7354. [CrossRef]
Coudert, F.-X. , Mellot-Draznieks, C. , Fuchs, A. H. , and Boutin, A. , 2009, “ Prediction of Breathing and Gate-Opening Transitions Upon Binary Mixture Adsorption in Metal-Organic Frameworks,” J. Am. Chem. Soc. Commun., 131(32), pp. 11329–11331. [CrossRef]
Plaines, D. , Levan, D. , Brandani, S. , Snurr, R. , Matzger, A. , and Arbor, A. , 2010, “ Carbon Dioxide Removal From Flue Gas Using Microporous Metal Organic Frameworks,” U.S. Department of the Environment, Washington, DC, DOE Award No. DE-FC26-07NT43092.
Britt, D. , Tranchemontagne, D. , and Yaghi, O. M. , 2008, “ Metal-Organic Frameworks With High Capacity and Selectivity for Harmful Gases,” Proc. Natl. Acad. Sci. U.S.A., 105(33), pp. 11623–11627. [CrossRef] [PubMed]
Tranchemontagne, D. J. , Hunt, J. R. , and Yaghi, O. M. , 2008, “ Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0,” Tetrahedron, 64(36), pp. 8553–8557. [CrossRef]
Millward, A. R. , and Yaghi, O. M. , 2005, “ Metal-Organic Frameworks With Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature,” J. Am. Chem. Soc., 127(51), pp. 17998–17999. [CrossRef] [PubMed]
Zhao, Z. , Li, Z. , and Lin, Y. S. , 2009, “ Adsorption and Diffusion of Carbon Dioxide on Metal-Organic Framework (MOF-5),” Ind. Eng. Chem. Res., 48(22), pp. 10015–10020. [CrossRef]
Saha, D. , and Bao, Z. , 2010, “ On MOF-5, MOF-177, and Zeolite 5A,” Environ. Sci. Technol., 44(5), pp. 1820–1826. [CrossRef] [PubMed]
Jung, J. Y. , Karadas, F. , Zulfiqar, S. , Deniz, E. , Aparicio, S. , Atilhan, M. , Yavuz, C. T. , and Han, S. M. , 2013, “ Limitations and High Pressure Behavior of MOF-5 for CO2 Capture,” Phys. Chem. Chem. Phys., 15(34), pp. 14319–14327. [CrossRef] [PubMed]
Lu, C.-M. , Liu, J. , Xiao, K. , and Harris, A. T. , 2010, “ Microwave Enhanced Synthesis of MOF-5 and Its CO2 Capture Ability at Moderate Temperatures Across Multiple Capture and Release Cycles,” Chem. Eng. J., 156(2), pp. 465–470. [CrossRef]
Ahn, H. , and Brandani, S. , 2005, “ Dynamics of Carbon Dioxide Breakthrough in a Carbon Monolith Over a Wide Concentration Range,” Adsorption, 11(S1), pp. 473–477. [CrossRef]
Hermosilla-Lara, G. , Momen, G. , Marty, P. , Leneindre, B. , and Hassouni, K. , 2007, “ Hydrogen Storage by Adsorption on Activated Carbon: Investigation of the Thermal Effects During the Charging Process,” Int. J. Hydrogen Energy, 32(10–11), pp. 1542–1553. [CrossRef]
Xiao, J. , Hu, M. , Bénard, P. , and Chahine, R. , 2013, “ Simulation of Hydrogen Storage Tank Packed With Metal-Organic Framework,” Int. J. Hydrogen Energy, 38(29), pp. 13000–13010. [CrossRef]
Xiao, J. , Tong, L. , Deng, C. , Bénard, P. , and Chahine, R. , 2010, “ Simulation of Heat and Mass Transfer in Activated Carbon Tank for Hydrogen Storage,” Int. J. Hydrogen Energy, 35(15), pp. 8106–8116. [CrossRef]
Liu, D. , Purewal, J. J. , Yang, J. , Sudik, A. , Maurer, S. , Mueller, U. , Ni, J. , and Siegel, D. J. , 2012, “ MOF-5 Composites Exhibiting Improved Thermal Conductivity,” Int. J. Hydrogen Energy, 37(7), pp. 6109–6117. [CrossRef]
Mu, B. , and Walton, K. S. , 2011, “ Thermal Analysis and Heat Capacity Study of Metal à Organic Frameworks,” J. Phys. Chem., 115(46), pp. 22748–22754.
Dantas, T. L. P. , Luna, F. M. T. , Silva, I . J. , de Azevedo, D. C. S. , Grande, C. A. , Rodrigues, A. E. , and Moreira, R. F. P. M. , 2011, “ Carbon Dioxide–Nitrogen Separation Through Adsorption on Activated Carbon in a Fixed Bed,” Chem. Eng. J., 169(1–3), pp. 11–19. [CrossRef]


Grahic Jump Location
Fig. 1

Physical structure of metal-organic frameworks (MOFs)

Grahic Jump Location
Fig. 2

Adsorption system. L, length of adsorption column (0.171 m) and M, size of each division (0.00171 m), where: L = Length of adsorption column (0.171 m), M = Size of each division (0.00171 m)

Grahic Jump Location
Fig. 3

Feed pressure curve fit for adsorption of H2 in activated carbon

Grahic Jump Location
Fig. 4

Adsorbed amount of H2 in activated carbon at bed midspan

Grahic Jump Location
Fig. 5

Adsorbed amount of CO2 on activated carbon at bed midspan after 83 min

Grahic Jump Location
Fig. 6

Profile of amount of CO2 stored on MOF-5 for various feed pressures

Grahic Jump Location
Fig. 7

Profile of amount of CO2 stored on MOF-5 for 50 min for varying feed pressures

Grahic Jump Location
Fig. 8

Temperature profile of bulk gas for storage of CO2 on MOF-5 for various feed pressures

Grahic Jump Location
Fig. 9

Temperature profile of adsorption column wall during adsorption of CO2 on MOF-5 for various feed pressures

Grahic Jump Location
Fig. 10

Profile of equilibrium adsorption constant for CO2 adsorption on MOF-5 for various feed pressures

Grahic Jump Location
Fig. 11

Effect of bed length on total amount of CO2 stored on MOF-5 and activated carbon for 250 min

Grahic Jump Location
Fig. 12

Effect of bed diameter on total amount of CO2 stored on MOF-5 and activated carbon for 600 min

Grahic Jump Location
Fig. 13

Profile of amount of CO2 stored on activated carbon for 50 min for varying feed pressures

Grahic Jump Location
Fig. 14

Effect of feed pressure on stored amount of CO2 on activated carbon bed for 50 min feeding duration



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In