Research Papers: Fuel Combustion

Application of a Phenomenological Model for the Engine-Out Emissions of Unburned Hydrocarbons in Driving Cycles

[+] Author and Article Information
Manuel Dorsch

Powertrain Development,
BMW Group,
Munich 80788, Germany
e-mail: manuel.dorsch@bmw.de

Jens Neumann

Powertrain Development,
BMW Group,
Munich 80788, Germany
e-mail: jens.je.neumann@bmw.de

Christian Hasse

Chair of Numerical Thermo-Fluid Dynamics
Department of Energy Process Engineering and Chemical Engineering,
Technische Universität Bergakademie Freiberg,
Freiberg 09599, Germany
e-mail: christian.hasse@iec.tu-freiberg.de

1Corresponding author.

Contributed by the Internal Combustion Engine Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received June 12, 2015; final manuscript received September 5, 2015; published online October 15, 2015. Assoc. Editor: Avinash Kumar Agarwal.

J. Energy Resour. Technol 138(2), 022201 (Oct 15, 2015) (10 pages) Paper No: JERT-15-1211; doi: 10.1115/1.4031674 History: Received June 12, 2015; Revised September 05, 2015

In this work, the application of a phenomenological model to determine engine-out hydrocarbon (HC) emissions in driving cycles is presented. The calculation is coupled to a physical-based simulation environment consisting of interacting submodels of engine, vehicle, and engine control. As a novelty, this virtual calibration methodology can be applied to optimize the energy conversion inside a spark-ignited (SI) internal combustion engine at transient operation. Using detailed information about the combustion process, the main origins and formation mechanisms of unburned HCs like piston crevice, oil layer, and wall quenching are considered in the prediction, as well as the in-cylinder postoxidation. Several parameterization approaches, especially, of the oil layer mechanism are discussed. After calibrating the emission model to a steady-state engine map, the transient results are validated successfully against measurements of various driving cycles based on different calibration strategies of engine operation.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Weiss, M. , Bonnel, P. , Hummel, R. , and Steininger, N. , 2013, “ A Complementary Emissions Test for Light-Duty Vehicles: Assessing the Technical Feasibility of Candidate Procedures,” European Commission, JRC Scientific and Policy Reports, Brussels, Belgium, Report No. EUR 25572 EN.
Blizard, N. C. , and Keck, J. C. , 1974, “ Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines,” SAE Paper No. 740191.
Tabaczynski, R. , Ferguson, C. , and Radhakrishnan, K. , 1977, “ A Turbulent Entrainment Model for Spark-Ignition Engine Combustion,” SAE Paper No. 770647.
Santavicca, D. , Liou, D. , and North, G. , 1990, “ A Fractal Model of Turbulent Flame Kernel Growth,” SAE Paper No. 900024.
D'Errico, G. , and Onorati, A. , 2006, “ Thermo-Fluid Dynamic Modelling of a Six-Cylinder Spark Ignition Engine With a Secondary Air Injection System,” Int. J. Engine Res., 7(1), pp. 1–16. [CrossRef]
Dorsch, M. , Neumann, J. , and Hasse, C. , 2014, “ Detailed Modeling of SI Engines in Driving Cycle Simulations for Fuel Consumption Analysis,” FISITA World Automotive Congress, Maastricht, The Netherlands, June 2–6, Paper No. F2014-CET-017.
Dorsch, M. , Neumann, J. , and Hasse, C. , 2014, “ Nutzung der Ladungswechsel- und Motorprozesssimulation zur Gesamtsystembewertung von CO2- und Rohemissionen in Fahrzyklen,” 7. MTZ-Fachtagung Ladungswechsel im Verbrennungsmotor.
Cheng, W. K. , Hamrin, D. , Heywood, J. B. , Hochgreb, S. , Min, K. , and Norris, M. , 1993, “ An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines,” SAE Paper No. 932708.
Min, K. , 1994, “ The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in Spark Ignition Engines,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
Hochgreb, S. , 1998, “ Combustion-Related Emissions in SI Engines,” Handbook of Air Pollution From Internal Combustion Engines: Pollutant Formation and Control, Academic, San Diego, CA.
Borrmeister, J. , and Hübner, W. , 1997, “ Einfluss der Brennraumform auf HC-Emission und den Verbrennungsablauf,” Motortech. Z., 58(7/8), pp. 2–8.
Janssen, C. , 2010, “ Möglichkeiten zur Prädiktion von unverbrannten Kohlenwasserstoffen in einem direkteinspritzenden Ottomotor,” Ph.D. thesis, Universität Rostock, Rostock, Germany.
Merker, G. P. , Schwarz, C. , Stiesch, G. , and Otto, F. , 2006, Verbrennungsmotoren-Simulation der Verbrennung und Schadstoffbildung, Vieweg+Teubner Verlag, Wiesbaden, Germany.
Huang, Z. , Pan, K. , Li, J. , Zhou, L. , and Jiang, D. , 1996, “ An Investigation on Simulation Models and Reduction Methods of Unburned Hydrocarbon Emissions in Spark Ignition Engines,” Combust. Sci. Technol., 115(1–3), pp. 105–123. [CrossRef]
Suck, G. , 2001, “ Untersuchung der HC-Quellen an einem Ottomotor mit Direkteinspritzung,” Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.
Spicher, U. , Feng, B. , and Kölmel, A. , 1999, “ HC Rohemissionen beim Kaltstart in der Warmlaufphase sowie bei Last-und Drehzahlsprungen,” Forschungsbericht FZKA-BWPLUS, Institut für Kolbenmaschinen Universität Karlsruhe, Germany, Report No. PEF396003.
Dent, J. C. , and Lakshminarayanan, P. A. , 1983, “ A Model for Adsorption and Desorption of Fuel Vapour by Cylinder Lubricating Oil Films and Its Contribution to Hydrocarbon Emissions,” SAE Paper No. 830652.
Frølund, K. , and Schramm, J. , 1997, “ Simulation of HC-Emissions From SI-Engines—A Parametric Study,” SAE Paper No. 972893.
Gatellier, B. , Trapy, J. , Herrier, D. , Quelin, J. M. , and Galliot, F. , 1992, “ Hydrocarbon Emissions of SI Engines as Influenced by Fuel Absorption-Desorption in Oil Films,” SAE Paper No. 920095.
Sodre, J. R. , 1998, “ A Parametric Model for Spark Ignition Engine Turbulent Flame Speed,” SAE Paper No. 982920.
Hasse, C. , Bollig, M. , Peters, N. , and Dwyer, H. A. , 2000, “ Quenching of Laminar Iso-Octane Flames at Cold Walls,” Combust. Flame, 122(1–2), pp. 117–129. [CrossRef]
Schramm, J. , and Sorenson, S. C. , 1990, “ A Model for Hydrocarbon Emissions From SI Engines,” SAE Paper No. 902169.
Trinker, F. H. , Chen, J. , and Davis, G. C. , 1993, “ A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects,” SAE Paper No. 932705.
Norris, M. G. , and Hochgreb, S. , 1996, “ Extent of Oxidation From the Lubricant Oil Layer in Spark-Ignition Engines,” SAE Paper No. 960069.
Nefischer, A. , Neumann, J. , Stanciu, A. , and Wimmer, A. , 2014, “ Quasi-Dimensional Modeling of Turbulence-Driven Phenomena in SI Engines,” Int. J. Veh. Des., 66(3), pp. 297–316. [CrossRef]
Grasreiner, S. , Neumann, J. , Luttermann, C. , Wensing, M. , and Hasse, C. , 2014, “ A Quasi-Dimensional Model of Turbulence and Global Charge Motion for SI Engines With Fully-Variable Valve-Trains,” Int. J. Engine Res., 15(7), pp. 805–816. [CrossRef]
Grasreiner, S. , Neumann, J. , Wensing, M. , and Hasse, C. , 2015, “ A Quasi-Dimensional Model of the Ignition Delay for Combustion Modeling in SI Engines,” ASME J. Eng. Gas Turbines Power, 137(7), p. 071502. [CrossRef]
Wentworth, J. T. , 1974, “ Effect of Combustion Chamber Shape and Spark Location on Exhaust Nitric Oxide and Hydrocarbon Emissions,” SAE Paper No. 740529.
Yildrim, A. M. , Gul, M. Z. , Ozatay, E. , and Karamangil, I. , 2006, “ Simulation of Hydrocarbon Emissions From an SI Engine,” SAE Paper No. 2006-01-1196.
Linna, J. R. , 1997, “ Contribution of Oil Layer Mechanism to the Hydrocarbon Emissions From Spark-Ignition Engines,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
Sodre, J. R. , and Yates, D. A. , 1997, “ An Improved Model for Spark Ignition Engine Exhaust Hydrocarbon,” SAE Paper No. 971011.
Wilke, C. R. , and Chang, P. , 1955, “ Correlation of Diffusion Coefficients in Dilute Solutions,” AIChE J., 1(2), pp. 264–270. [CrossRef]
Norris, M. G. , and Hochgreb, S. , 1994, “ Novel Experiment on In-Cylinder Desorption of Fuel From Oil Layer,” SAE Paper No. 941963.
Watkins, R. C. , 1984, “ The Physics of Lubricant Additives,” Phys. Technol., 15(6), pp. 321–328. [CrossRef]
Linna, J.-R. , Malberg, H. , Bennett, P. J. , Palmer, J. , Tian, T. , and Cheng, W. K. , 1997, “ Contribution of Oil Layer Mechanism to the Hydrocarbon Emissions From Spark-Ignition Engines,” SAE Paper No. 972892.
Kreith, F. , 1960, Principles of Heat Transfer, International Textbook Company, Scranton, PA.
Woschni, G. , 1967, “ A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Paper No. 670931.
Grill, M. , Billinger, T. , and Bargende, M. , 2006, “ Quasi-Dimensional Modeling of Spark Ignition Engine Combustion With Variable Valve Train,” SAE Paper No. 2006-01-1107.
Peters, N. , 2000, Turbulent Combustion (Cambridge Monographs on Mechanics), Cambridge University, Cambridge, UK.
Metghalchi, M. , and Keck, J. C. , 1982, “ Burning Velocities of Mixtures of Air and Methanol, Isooctane and Indolene an High Pressure and Temperature,” Combust. Flame, 48, pp. 191–210. [CrossRef]
Curran, H. J. , Gaffuri, P. , Pitz, W. J. , and Westbrook, C. K. , 2002, “ A Comprehensive Modeling Study of Iso-Octane Oxidation,” Combust. Flame, 129(3), pp. 253–280. [CrossRef]
Joos, F. , 2006, Technische Verbrennung, Verbrennungstechnik, Verbrennungsmodellierung, Emissionen, Springer Verlag, Berlin.
Wu, K.-C. , Hochgreb, S. , and Norris, M. G. , 1995, “ Chemical Kinetic Modeling of Exhaust Hydrocarbon Oxidation,” Combust. Flame, 100(1), pp. 193–201. [CrossRef]
Oliveira, I. B. , and Hochgreb, S. , 1999, “ Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison With Experiments,” SAE Paper No. 1999-01-3578.
Lavoie, G. A. , 1978, “ Correlations of Combustion Data for S.I. Engine Calculations—Laminar Flame Speed, Quench Distance and Global Reaction Rates,” SAE Paper No. 780229.
Sodre, J. R. , 1999, “ Further Improvements on a HC Emissions Model: Partial Burn Effects,” SAE Paper No. 1999-01-0222.
Min, K. , and Cheng, W. K. , 1995, “ Oxidation of the Piston Crevice Hydrocarbon During the Expansion Process in a Spark Ignition Engine,” Combust. Sci. Technol., 106(617), pp. 307–326. [CrossRef]


Grahic Jump Location
Fig. 1

Possible formation mechanisms of engine-out HC emissions referred to Refs.[812]

Grahic Jump Location
Fig. 2

Schematic illustration of the fuel vapor concentration in the different phases according to Refs. [17,18]

Grahic Jump Location
Fig. 3

Schematic illustration of the coupled simulation environment

Grahic Jump Location
Fig. 4

Comparison of different diffusion coefficients of fuel into oil

Grahic Jump Location
Fig. 5

Oil film thickness versus engine speed at several liner temperatures

Grahic Jump Location
Fig. 6

Comparison of different Henry coefficients for various fuel/oil combinations

Grahic Jump Location
Fig. 7

Schematic illustration of cut surfaces at different positions of the flame front

Grahic Jump Location
Fig. 8

Relative proportion of the HC sources and the postoxidation to the total amount of formation compared to the measured value (100%) at defined engine speed and load (BMEP)

Grahic Jump Location
Fig. 9

Comparison of HC emissions between simulation and measurement at steady-state engine operation referred to 2000 min−1 and 4.5 bar BMEP

Grahic Jump Location
Fig. 10

Results of HC engine-out emission in the NEDC started with a warmed-up engine

Grahic Jump Location
Fig. 11

Results of HC engine-out emission in the NEDC started with a cold engine

Grahic Jump Location
Fig. 12

Results of HC engine-out emission in the NEDC warmed-up started and constant fuel rich mixture



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In