Research Papers: Energy Systems Analysis

An Experimental Study on Heterogeneous Porous Stacks in a Thermoacoustic Heat Pump

[+] Author and Article Information
Syeda Humaira Tasnim

School of Engineering,
University of Guelph,
50 Stone Road East,
Guelph, ON N1G 2W1, Canada

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received December 29, 2016; final manuscript received February 20, 2017; published online March 30, 2017. Assoc. Editor: Esmail M. A. Mokheimer.

J. Energy Resour. Technol 139(4), 042005 (Mar 30, 2017) (8 pages) Paper No: JERT-16-1531; doi: 10.1115/1.4036053 History: Received December 29, 2016; Revised February 20, 2017

Growing evidence suggests that research must be done to develop energy efficient systems and clean energy conversion technologies to combat the limited sources of fossil fuel, its high price, and its adverse effects on environment. Thermoacoustic is a clean energy conversion technology that uses the conversion of sound to thermal energy and vice versa for the design of heat engines and refrigerators. However, the efficient conversion of sound to thermal energy demands research on altering fluid, operational, and geometric parameters. The present study is a contribution to improve the efficiency of thermoacoustic devices by introducing a novel stack design. This novel stack consists of alternative conducting and insulating materials or heterogeneous materials. The author examined the performance of eight different types of heterogeneous stacks (combination 1–8) that are only a fraction of the displacement amplitude long and consisted of alternating aluminum (AL) and Corning Celcor or reticulated vitreous carbon (RVC) foam materials. From the thermal field measurements, the author found that combination eight performs better (12% more temperature difference at the stack ends) than all the other combinations. One interesting feature obtained from these experiments is that combination 7 produces the minimum temperature at the cold end (17% less than other combinations). The thermal performance of the heterogeneous stack is compared to that of the traditional homogeneous stack. Based on the study, the newly proposed stack design provides better cooling performance than a traditionally designed stack.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Wong, K. V. , Perilla, N. , and Paddon, A. , 2014, “ Nanoscience and Nanotechnology in Solar Cells,” ASME J. Energy Resour. Technol., 136(1), p. 014001. [CrossRef]
Nihouse, G. C. , 2007, “ A Preliminary Assessment of Ocean Thermal Energy Conversion Resources,” ASME J. Energy Resour. Technol., 129(1), pp. 10–17. [CrossRef]
Anderson, M. , and Beyene, A. , 2016, “ Integrated Resource Mapping of Wave and Wind Energy,” ASME J. Energy Resour. Technol., 138(1), p. 011203. [CrossRef]
Guell, B. M. , Sandquist, J. , and Sorum, L. , 2013, “ Gasification of Biomass to Second Generation Biofuels: A Review,” ASME J. Energy Resour. Technol., 135(1), p. 014001. [CrossRef]
Wong, K. V. , and Tan, N. , 2015, “ Feasibility of Using More Geothermal Energy to Generate Electricity,” ASME J. Energy Resour. Technol., 137(4), p. 041201. [CrossRef]
Garimella, S. , and Garimella, V. S. , 1999, “ Commercial Boiler Waste-Heat Utilization for Air Conditioning in Developing Countries,” ASME J. Energy Resour. Technol., 121(3), pp. 203–208. [CrossRef]
Jacobs, T. J. , 2015, “ Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies,” ASME J. Energy Resour. Technol., 137(4), p. 042004. [CrossRef]
Schock, H. , Brereton, G. , Case, E. , D'Angelo, J. , Hogan, T. , Lyle, M. , Maloney, R. , Moran, K. , Novak, J. , Nelson, C. , Panayi, A. , Ruckle, T. , Sakamoto, J. , Shih, T. , Timm, E. , Zhang, L. , and Zhu, G. , 2013, “ Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications,” ASME J. Energy Resour. Technol., 135(2), p. 0022001. [CrossRef]
Smith, R. W. M. , Keolian, R. M., and Garrett, S. L., 1999, “ High Efficiency 2-kW Thermoacoustic Driver,” J. Acoust. Soc. Am., 105(2), pp. 1072–1078.
Adeff, J. A. , and Hofler, T. J. , 2000, “ Design and Construction of a Solar Powered, Thermoacoustically Driven, Thermoacoustic Refrigerator,” J. Acoust. Soc. Am., 107(6), pp. L37–L42. [CrossRef] [PubMed]
Swift, G. W. , 1992, “ Analysis and Performance of a Large Thermoacoustic Engine,” J. Acoust. Soc. Am., 92(3), pp. 1551–1563. [CrossRef]
Swift, G. W. , 1988, “ Thermoacoustic Engines,” J. Acoust. Soc. Am., 84(4), pp. 1145–1180. [CrossRef]
Swift, G. W. , Migliori, A. , Hofler, T. J. , and Wheatley, J. , 1985, “ Theory and Calculations for an Intrinsically Irreversible Acoustic Prime Mover Using Liquid Sodium as Working Fluid,” J. Acoust. Soc. Am., 78(2), pp. 767–781. [CrossRef]
Swift, G. W., 2002, “ Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators,” Los Alamos National Laboratory, Los Alamost, NM, Report No. LA-UR-99-895.
Garrett, S. L. , and Hofler, T. J. , 1992, “ ThermoAcoustic Refrigeration,” ASHARE J., 34(12), pp. 28–36.
Garrett, S. L. , 2004, “ Resource Letter: TA-1: Thermoacoustic Engines and Refrigerators,” Am. J. Phys., 72(1), pp. 11–17. [CrossRef]
Garrett, S. L. , 1997, “ High Power Thermoacoustic Refrigerator,” U.S. Patent No. 5,647,216.
Garrett, S. L. , Adeff, J. A. , and Hofler, T. , 1993, “ Thermoacoustic Refrigerator for Space Applications,” J. Thermophys. Heat Transfer, 7(4), pp. 595–599. [CrossRef]
Garret, S. L. , Perkins, D. K. , and Gopinath, A. , 1994, “ Thermoacoustic Refrigerator Heat Exchangers: Design, Analysis, and Fabrication,” Tenth International Heat Transfer Conference, Brighton, UK, Aug. 14–18, pp. 375–380.
Migliori, A. , and Swift, S. G. , 1988, “ Liquid Sodium Thermoacoustic Engine,” Appl. Phys. Lett., 53(5), pp. 355–357. [CrossRef]
Hofler, T. , 1986, “ Thermoacoustic Refrigerator Design and Performance,” Ph.D. thesis, University of California, San Diego, CA.
Poese, M. E. , and Garrett, S. L. , 2000, “ Performance Measurements on a Thermoacoustic Refrigerator Driven at High Amplitudes,” J. Acoust. Soc. Am., 107(5), pp. 2480–2486. [CrossRef] [PubMed]
Tijani, M. E. H. , 2001, “ Loudspeaker-Driven Thermo-Acoustic Refrigeration,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
Reid, R. S. , and Swift, G. W. , 2000, “ Experiments With a Flow-Through Thermoacoustic Refrigerator,” J. Acoust. Soc. Am., 108(6), pp. 2835–2842. [CrossRef]
Adeff, J. A. , Hofler, T. J. , Atchley, A. A. , and Moss, W. C. , 1998, “ Measurements With Reticulated Vitreous Carbon Stacks in Thermoacoustic Prime Movers and Refrigerators,” J. Acoust. Soc. Am., 104(1), pp. 32–38. [CrossRef]
Bösel, J. , Trepp, C. , and Fourie, J. G. , 1999, “ An Alternative Stack Arrangement for Thermoacoustic Heat Pumps and Refrigerators,” J. Acoust. Soc. Am., 106(2), pp. 707–715. [CrossRef]
Swift, G. W. , and Keolian, R. M. , 1993, “ Thermoacoustics in Pin-Array Stacks,” J. Acoust. Soc. Am., 94(2), pp. 941–943. [CrossRef]
Ishikawa, H. , and Mee, D. J. , 2002, “ Numerical Investigation of Flow and Energy Fields Near a Thermoacoustic Couple,” J. Acoust. Soc. Am., 111(2), pp. 831–839. [CrossRef] [PubMed]
Roh, H. S. , Raspet, R. , and Bass, H. E. , 2007, “ Parallel Capillary-Tube-Based Extension of Thermoacoustic Theory for Random Porous Media,” J. Acoust. Soc. Am., 121(3), pp. 1413–1422. [CrossRef] [PubMed]
Jensen, C. , and Raspet, R. , 2010, “ Thermoacoustic Properties of Fibrous Materials,” J. Acoust. Soc. Am., 127(6), pp. 3470–3484. [CrossRef] [PubMed]
Mahmud, S. , and Fraser, R. A. , 2009, “ Therporaoustic Convection: Modeling and Analysis of Flow, Thermal, and Energy Fields,” ASME J. Heat Transfer, 13(10), p. 101011. [CrossRef]
Tasnim, S. H. , Mahmud, S. , and Fraser, R. A. , 2012, “ Modeling and Analysis of Flow, Thermal, and Energy Fields Within Stacks of Thermoacoustic Engines Filled With Porous Media,” Heat Transfer Eng., 33(15), pp. 1–14.
Tasnim, S. H. , Mahmud, S. , Fraser, R. A. , and Pop, I. , 2011, “ Brinkman Forchheimer Modeling for Porous Media Thermoacoustic System,” Int. J. Heat Mass Transfer, 54(17–18), pp. 3811–3821. [CrossRef]
Tasnim, S. H. , Mahmud, S. , and Fraser, R. A. , 2011, “ Second Law Analysis of Porous Thermoacoustic Stack Systems,” Appl. Therm. Eng., 31(14–15), pp. 2301–2311. [CrossRef]
Tasnim, S. H. , Mahmud, S. , and Fraser, R. A. , 2009, “ Modeling and Analysis of Flow, Thermal, and Energy Fields Within Stacks of Thermoacoustic Engines Filled With Porous Media: A Conjugate Problem,” ASME J. Therm. Sci. Eng. Appl., 1(4), p. 041006. [CrossRef]
Mahmud, S. , Tasnim, S. H. , Fraser, R. A. , and Pop, I. , 2011, “ Hydrodynamic and Thermal Interaction of a Periodically Oscillating Fluid With a Porous Medium Lying Over a Thick Solid Plate,” Int. J. Therm. Sci., 50(10), pp. 1908–1919. [CrossRef]
Matveev, K. I. , 2010, “ Thermoacoustic Energy Analysis of Transverse-Pin and Tortuous Stacks at Large Acoustic Displacements,” Int. J. Therm. Sci., 49(6), pp. 1019–1025. [CrossRef]
Asgharian, B. , and Matveev, K. I. , 2014, “ Influence of Finite Heat Capacity of Solid Pins and Their Spacing on Thermoacoustic Performance of Transverse-Pin Stacks,” Appl. Therm. Eng., 62(2), pp. 593–598. [CrossRef]
Huan, G. , Li, F. , Jie, X. , Shu-Yi, Z. , Sha, T. , Yue-Tao, Y. , and Hui, Z. , 2014, “ Nonlinear Impedances of Thermoacoustic Stacks With Ordered and Disordered Structures,” Chin. Phys. B, 23(7), p. 074301. [CrossRef]
Ikhsan, S. , Utomo, B. S. , Katsuta, A. , and Makoto, M. N. , 2013, “ Experimental Study on the Influence of the Porosity of Parallel Plate Stack on the Temperature Decrease of a Thermoacoustic Refrigerator,” J Phys.: Conf Ser., 423(1), pp. 105–110.
Hatazaw, M. , 2012, “ Oscillatory Flow in a Thermoacoustic Sound Wave Generator: Optimum Stack Size and Shape,” J. Cryog. Soc. Jpn., 47(1), pp. 16–23. [CrossRef]
Yanagimoto, K. , Sakamoto, S.-I. , Kuroda, K. , Nakano, Y. , and Watanabe, Y. , 2012, “ Improvement of Energy Conversion Efficiency of Thermoacoustic Engine by a Multistage Stack With Multiple Pore Radii, Nonlinear Acoustics State-of-the-Art and Perspectives,” AIP Conf. Proc., 1474(1), pp. 279–282.
Corning, 2016, “Corning Celcor Substrate Stationary Applications”, Corning, Inc., Corning, NY, accessed Jan. 20, 2015, http://www.corning.com/environmentaltechnologies/products_services/corning_celcor_substrate_stationary_applications.aspx (discontinued).
ERG Materials and Aerospace Corporation, 2016, “ERG Aerospace Corporation,” Oakland, CA, accessed Dec. 15, 2014, www.ergaerospace.com
National Instruments, 2016, “ Operating Instructions and Specifications NI 9211 4-Channel Thermocouple Input Module,” National Instruments, Austin, TX, accessed Jan. 12, 2015, http://www.ni.com/pdf/manuals/373466d.pdf
Omega Engineering, 2014, “ Color Codes for Thermocouples, Wire and Connectors, Tolerances, Special Limits of Error, Reference Guide,” Omega Engineering, Norwalk, CT, accessed Apr. 20, 2016, http://www.omega.com/pptst/TC_GEN_SPECS_REF.html
Omega Engineering, 2016, “Thermocouples: Using Thermocouples in Temperature Measurement,” Omega Engineering, Norwalk, CT, accessed Jan. 25, 2015, http://www.omega.com/prodinfo/ThermocoupleSensor.html
Wheeler, J. A. , and Ganji, R. A. , 2010, Introduction to Engineering Experimentation, 3rd ed., Prentice Hall, Upper Saddle River, NJ. [PubMed] [PubMed]


Grahic Jump Location
Fig. 1

A thermoacoustic heat pump and the measuring systems

Grahic Jump Location
Fig. 2

Eight combinations of heterogeneous stack structure are shown in (a)–(h): (a) combination 1 (40 PPI AL + 45 PPI RVC + 40 PPI AL), (b) combination 2 (40 PPI AL + 80 PPI RVC + 40 PPI AL), (c) combination 3 (40 PPI AL + 80 PPI RVC + 40 PPI AL + 80 PPI RVC), (d) combination 4 (80 PPI RVC + 40 PPI AL + 80 PPI RVC + 40 PPI AL), (e) combination 5 (20 PPI AL + 1 cm Celcor + 20 PPI AL), (f) combination 6 (40 PPI AL + 1 cm Celcor + 40 PPI AL), (g) combination 7 (80 PPI RVC + 1 cm Celcor + 80 PPI RVC), and (h) combination 8 (100 PPI RVC + 1 cm Celcor + 100 PPI RVC)

Grahic Jump Location
Fig. 3

(a) Maximum temperature difference produced by three different homogeneous stack materials and (b) temperature difference produced by 80 PPI RVC stacks as length varies from 1 to 4 cm

Grahic Jump Location
Fig. 4

Temperature difference versus nondimensional stack center position form the pressure antinode for heterogeneous stacks (combination 1–4)

Grahic Jump Location
Fig. 5

Temperature difference versus nondimensional stack center position form the pressure antinode for three homogeneous and a heterogeneous stack (combination 3)

Grahic Jump Location
Fig. 6

Temperature difference versus nondimensional stack center position form the pressure antinode for heterogeneous stacks (combination 5–8)

Grahic Jump Location
Fig. 7

Temperature difference versus nondimensional stack center position form the pressure antinode for different stack material composition

Grahic Jump Location
Fig. 8

Time evolution of temperature profiles at two extreme ends of the stack for: (a) combination 2, (b) combination 7, and (c) combination 8



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In