Vaferi,
B.
,
Salimi,
V.
,
Dehghan Baniani,
D.
,
Jahanmiri,
A.
, and
Khedri,
S.
, 2012, “
Prediction of Transient Pressure Response in the Petroleum Reservoirs Using Orthogonal Collocation,” J. Pet. Sci. Eng.,
98–99, pp. 156–163.

[CrossRef]
Horne,
R. N.
, 1990, Modern Well Test Analysis, Petroway, Inc., Palo Alto, CA, p. 183.

Bourdet,
D.
, and
Gringarten,
A. C.
, 1980, “
Determination of Fissure Volume and Block Size in Fractured Reservoirs by Type-Curve Analysis,” SPE Annual Technical Conference and Exhibition, Dallas, TX, Sept. 21–24, SPE Paper No. SPE-9293-MS.

Vaferi,
B.
, and
Eslamloueyan,
R.
, 2015, “
Hydrocarbon Reservoirs Characterization by co-Interpretation of Pressure and Flow Rate Data of the Multi-Rate Well Testing,” J. Pet. Sci. Eng.,
135, pp. 59–72.

[CrossRef]
Qin,
J.
,
Cheng,
S.
,
He,
Y.
,
Wang,
Y.
,
Feng,
D.
,
Yang,
Z.
,
Li,
D.
, and
Yu,
H.
, 2018, “
Decline Curve Analysis of Fractured Horizontal Wells Through a Segmented Fracture Model,” ASME J. Energy Resour. Technol.,
141(1), p. 012903.

Gringarten,
A. C.
, and
Ramey
,
H. J., Jr.
, 1973, “
The Use of Source and Green's Functions in Solving Unsteady-Flow Problems in Reservoirs,” SPE J.,
13(5), pp. 285–296.

Mohamed,
E.-M. M. H.
,
Ahmad,
M. A. H. M.
,
Asia Osman Ali,
T.
, and
Al-Hassan,
M. M. A.-A.
, 2017, Numerical Solution by Finite Difference Approach for Homogenous Finite and Infinite Redial Reservoir by Computer Programing,
Sudan University of Science and Technology, Khartoum, Sudan.

Khoei,
A. R.
,
Hosseini,
N.
, and
Mohammadnejad,
T.
, 2016, “
Numerical Modeling of Two-Phase Fluid Flow in Deformable Fractured Porous Media Using the Extended Finite Element Method and an Equivalent Continuum Model,” Adv. Water Resour.,
94, pp. 510–528.

[CrossRef]
Amaziane,
B.
,
Bourgeois,
M.
, and
El Fatini,
M.
, 2014, “
Adaptive Mesh Refinement for a Finite Volume Method for Flow and Transport of Radionuclides in Heterogeneous Porous Media,” Oil Gas Sci. Technol.-Revue d'IFP Energies Nouvelles,
69(4), pp. 687–699.

[CrossRef]
Siavashi,
M.
,
Blunt,
M. J.
,
Raisee,
M.
, and
Pourafshary,
P.
, 2014, “
Three-Dimensional Streamline-Based Simulation of Non-Isothermal Two-Phase Flow in Heterogeneous Porous Media,” Comput. Fluids,
103, pp. 116–131.

[CrossRef]
Ahmadpour,
M.
,
Siavashi,
M.
, and
Moghimi,
M.
, 2018, “
Numerical Simulation of Two-Phase Mass Transport in Three-Dimensional Naturally Fractured Reservoirs Using Discrete Streamlines,” Numer. Heat Transfer, Part A: Appl.,
73(7), pp. 482–500.

[CrossRef]
Ahmadpour,
M.
,
Siavashi,
M.
, and
Doranehgard,
M. H.
, 2016, “
Numerical Simulation of Two-Phase Flow in Fractured Porous Media Using Streamline Simulation and IMPES Methods and Comparing Results With a Commercial Software,” J. Central South Univ.,
23(10), pp. 2630–2637.

[CrossRef]
Doranehgard,
M. H.
, and
Siavashi,
M.
, 2018, “
The Effect of Temperature Dependent Relative Permeability on Heavy Oil Recovery During Hot Water Injection Process Using Streamline-Based Simulation,” Appl. Therm. Eng.,
129, pp. 106–116.

[CrossRef]
Jinasena,
A.
,
Kaasa,
G. O.
, and
Sharma,
R.
, 2017, “
Use of Orthogonal Collocation Method for a Dynamic Model of the Flow in a Prismatic Open Channel: For Estimation Purposes,” 58th Conference on Simulation and Modelling (SIMS 58), Reykjavik, Iceland, Sept. 25–27.

Shelly Arora,
S.
, and
Kaur,
I.
, 2015, “
Numerical Solution of Heat Conduction Problems Using Orthogonal Collocation on Finite Elements,” J. Nigerian Math. Soc.,
34(3), pp. 286–302.

[CrossRef]
Finlayson,
B. A.
, 1974, “
Orthogonal Collocation in Chemical Reaction Engineering,” Catal. Rev.: Sci. Eng.,
10(1), pp. 69–138.

[CrossRef]
Villadsen,
J. V.
, and
Stewart,
W. E.
, 1995, “
Solution of Boundary-Value Problems by Orthogonal Collocation,” Chem. Eng. Sci.,
50(24), p. 3979.

[CrossRef]
Tien,
C.
, 2013, “
Adsorption Calculations and Modelling,” Butterworth-Heinemann, Oxford, UK.

Vaferi,
B.
, and
Eslamloueyan,
R.
, 2015, “
Simulation of Dynamic Pressure Response of Finite Gas Reservoirs Experiencing Time Varying Flux in the External Boundary,” J. Natural Gas Sci. Eng.,
26, pp. 240–252.

[CrossRef]
Zhang,
M.
, and
Ayala,
L. F.
, 2018, “
A General Boundary Integral Solution for Fluid Flow Analysis in Reservoirs With Complex Fracture Geometries,” ASME J. Energy Resour. Technol.,
140(5), p. 052907.

[CrossRef]
Da Prat,
G.
, 1990, “
Well Test Analysis for Naturally Fractured Reservoirs,” Elsevier, Amsterdam, The Netherlands.

Hassanzadeh,
H.
, and
Pooladi-Darvish,
M.
, 2006, “
Effects of Fracture Boundary Conditions on Matrix-Fracture Transfer Shape Factor,” Transp. Porous Media,
64(1), pp. 51–71.

[CrossRef]
Ordonez,
A.
,
Penuela,
G.
,
Idrobo,
E. A.
, and
Medina,
C. E.
, 2001, “
Recent Advances in Naturally Fractured Reservoir Modeling,” CT&F—Ciencia, Tecnología y Futuro, Bucaramanga, CO.

Stewart,
G.
, 2011, Well Test, Design and Analysis,
PennWell Corporation,
Tulsa, OK.

Zimmerman,
R. W.
,
Chen,
G. S.
, and
Bodvarsson,
G.
, 1992, “
A Dual-Porosity Reservoir Model With an Improved Coupling Term,” 17th Workshop on Geothermal Reservoir Engineering, Stanford Geothermal Workshop, Stanford, CA, Jan. 29–31.

Ahn,
C.
,
Dilmore,
R.
, and
Wang,
J.
, 2016, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model,” ASME J. Energy Resour. Technol.,
139(1), p. 012903.

[CrossRef]
Bai,
M.
,
Ma,
Q.
, and
Roegiers,
J.-C.
, 1994, “
Dual-Porosity Behaviour of Naturally Fractured Reservoirs,” Int. J. Numer. Anal. Methods Geomech.,
18(6), pp. 359–376.

[CrossRef]
Barenblatt,
G. I.
,
Zheltov,
I.
, and
Kochina,
I. N.
, 1960, “
Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata],” J. Appl. Math. Mech.,
24(5), pp. 1286–1303.

[CrossRef]
Kazemi,
H.
,
Seth,
M. S.
, and
Thomas,
G. W.
, 1969, “
The Interpretation of Interference Tests in Naturally Fractured Reservoirs With Uniform Fracture Distribution,” SPE J.,
9(4), p. 10.

https://www.onepetro.org/journal-paper/SPE-2156-B
Mavor,
M. J.
, and
Cinco-Ley,
H.
, 1979, “
Transient Pressure Behavior of Naturally Fractured Reservoirs,” SPE California Regional Meeting, Ventura, CA, Apr. 18–20, SPE Paper No. SPE-7977-MS.

Warren,
J. E.
, and
Root,
P. J.
, 1963, “
The Behavior of Naturally Fractured Reservoirs,” SPE J.,
3(3), pp. 245–255.

Obinna,
E. D.
, and
Dehghanpour,
H.
, 2016, “
Characterizing Tight Oil Reservoirs With Dual- and Triple-Porosity Models,” ASME J. Energy Resour. Technol.,
138(3), p. 032801.

[CrossRef]
Chen,
C.-C.
,
Serra,
K.
,
Reynolds,
A. C.
, and
Raghavan,
R.
, 1985, “
Pressure Transient Analysis Methods for Bounded Naturally Fractured Reservoirs,” SPE J.,
25(3), pp. 451–464.

de Swaan O,
A.
, 1976, “
Analytic Solutions for Determining Naturally Fractured Reservoir Properties by Well Testing,” SPE J.,
16(3), pp. 117–122.

Najurieta,
H. L.
, 1980, “
A Theory for Pressure Transient Analysis in Naturally Fractured Reservoirs,” J. Pet. Technol.,
32(7), pp. 1241–1250.

[CrossRef]
Serra,
K.
,
Reynolds,
A. C.
, and
Raghavan,
R.
, 1983, “
New Pressure Transient Analysis Methods for Naturally Fractured Reservoirs,” J. Pet. Technol.,
35(12), pp. 2271–2288.

[CrossRef]
Streltsova,
T. D.
, 1983, “
Well Pressure Behavior of a Naturally Fractured Reservoir,” SPE J.,
23(5), pp. 769–780.

Bai,
M.
,
Ma,
Q.
, and
Roegiers,
J.-C.
, 1994, “
A Nonlinear Dual-Porosity Model,” Appl. Math. Modell.,
18(11), pp. 602–610.

[CrossRef]
Bai,
M.
,
Roegiers,
J.-C.
, and
Elsworth,
D.
, 1995, “
Poromechanical Response of Fractured-Porous Rock Masses,” J. Pet. Sci. Eng.,
13(3–4), pp. 155–168.

[CrossRef]
Ge,
J.-L.
, and
Wu,
Y.-S.
, 1982, “
The Behavior of Naturally Fractured Reservoirs and the Technique for Well Test Analysis at Constant Pressure Condition,” Pet. Explor. Develop.,
9, pp. 53–65. (in Chinese)

Chen,
Z.-X.
, 1990, “
Analytical Solutions for Double-Porosity, Double-Permeability and Layered Systems,” J. Pet. Sci. Eng.,
5(1), pp. 1–24.

[CrossRef]
Mesbah,
M.
,
Vatani,
A.
, and
Siavashi,
M.
, 2018, “
Streamline Simulation of Water-Oil Displacement in a Heterogeneous Fractured Reservoir Using Different Transfer Functions,” Oil Gas Sci. Technol.-Rev. IFP Energies Nouvelles,
73(2018), p. 14.

Herrera-Hernández,
E. C.
,
Aguilar-Madera,
C. G.
,
Hernández,
D.
,
Luisa, D. P.
,
Camacho-Velázquezd, R. G.
, 2018, Comput. Appl. Math.,
37(4), pp. 4342–4356.

[CrossRef]
Rice,
R. G.
, and
Do,
D. D.
, 2012, Applied Mathematics and Modeling for Chemical Engineers, 2nd ed.,
Wiley,
Hoboken, NJ.

Da Prat,
G.
, 1990, Well Test Analysis for Fractured Reservoir Evaluation, 1st ed.,
Elsevier Science, Amsterdam, The Netherlands.

Ahmed,
T.
, 2010, Reservoir Engineering Handbook, 4th ed.,
Gulf Professional Publishing,
Burlington, NJ.

Yarveicy,
H.
, and
Ghiasi,
M. M.
, 2017, “
Modeling of Gas Hydrate Phase Equilibria: Extremely Randomized Trees and LSSVM Approaches,” J. Mol. Liq.,
243, pp. 533–541.

[CrossRef]
Yarveicy,
H.
,
Ghiasi,
M. M.
, and
Mohammadi,
A. H.
, 2018, “
Determination of the Gas Hydrate Limits to Isenthalpic Joule–Thomson Expansions,” Chem. Eng. Res. Des., Artic. Press,
132, pp. 208–214.

[CrossRef]
Eslamloueyan,
R.
,
Vaferi,
B.
, and
Ayatollahi,
S.
, 2010, “
Fracture Characterizations From Well Testing Data Using Artificial Neural Networks,” 72nd EAGE Conference and Exhibition Incorporating SPE EUROPEC, Barcelona, Spain, June 14–17.

Yarveicy,
H.
,
Moghaddam,
A. K.
, and
Ghiasi,
M. M.
, 2014, “
Practical Use of Statistical Learning Theory for Modeling Freezing Point Depression of Electrolyte Solutions: LSSVM Model,” J. Natural Gas Sci. Eng.,
20, pp. 414–421.

[CrossRef]