0
Research Papers: Fuel Combustion

Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures

[+] Author and Article Information
Sai C. Yelishala

Department of Mechanical and
Industrial Engineering,
Northeastern University,
Boston, MA 02115
e-mail: Yelishala.s@husky.neu.edu

Ziyu Wang, Hameed Metghalchi, Yiannis A. Levendis

Department of Mechanical and
Industrial Engineering,
Northeastern University,
Boston, MA 02115

Kumaran Kannaiyan, Reza Sadr

Department of Mechanical Engineering,
Texas A&M University at Qatar,
P.O. Box 23874,
Doha, Qatar

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received December 11, 2018; final manuscript received December 16, 2018; published online February 14, 2019. Special Editor: Reza Sheikhi.

J. Energy Resour. Technol 141(8), 082205 (Feb 14, 2019) (9 pages) Paper No: JERT-18-1887; doi: 10.1115/1.4042411 History: Received December 11, 2018; Revised December 16, 2018

This experimental research examined the effect of CO2 as a diluent on the laminar burning speed of propane–air mixtures. Combustion took place at various CO2 concentrations (0–80%), different equivalence ratios (0.7<ϕ<1.2) and over a range of temperatures (298–420 K) and pressures (0.5–6.2 atm). The experiments were performed in a cylindrical constant volume chamber with a Z-shaped Schlieren system, coupled with a high-speed CMOS camera to capture the propagation of the flames at speeds up to 4000 frames per second. The flame stability of these mixtures at different pressures, equivalence ratios, and CO2 concentrations was also studied. Only laminar, spherical, and smooth flames were considered in measuring laminar burning speed. Pressure rise data as a function of time during the flame propagation were the primary input of the multishell thermodynamic model for measuring the laminar burning speed of propane-CO2-air mixtures. The laminar burning speed of such blends was observed to decrease with the addition of CO2 and to increase with the gas temperature. It was also noted that the laminar burning speed decreases with increasing pressure. The collected experimental data were compared with simulation data obtained via a steady one-dimensional (1D) laminar premixed flame code from Cantera, using a detailed H2/CO/C1–C4 kinetics model encompassing 111 species and 784 reactions.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

U.S. Department of Energy, Alternative Fuels Data Center, 2018, “Propane Vehicle Emissions,” U.S. Department of Energy, Washington, DC, accessed Jan. 5, 2018, https://afdc.energy.gov/vehicles/propane_emissions.html
Pourkhesalian, A. M. , Shamekhi, A. H. , and Salimi, F. , 2010, “ Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics,” Fuel, 89(5), pp. 1056–1063. [CrossRef]
Hendren, F. , 1983, “ Propane Power for Light Duty Vehicles: An Overview,” SAE Trans., 92, pp. 72–86. http://www.jstor.org/stable/44668056
Ashok, B. , Ashok, D. S. , and Kumar, R. C. , 2015, “ LPG Diesel Dual Fuel Engine—A Critical Review,” Alexandra Eng. J., 54(2), pp. 105–126. [CrossRef]
Mardi, M. , Khalilarya, S. , and Nemari, A. , 2014, “ A Numerical Investigation on the Influence of EGR in a Supercharged SI Engine Fueled With Gasoline and Alternative Fuels,” Energy Convers. Manage., 83, pp. 260–269. [CrossRef]
UNEP Ozone Secretariat, 2016, “ United Nations Environment Programme,” Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances That Deplete the Ozone Layer, Kigali, Rwanda, Oct. 8–14, Document No. UNEP/OzL. Pro.28/CRP/10.
European Parliament, 2014, “ Regulation (EU) No. 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No. 842/2006,” Off. J. Eur. Union, L150, pp. 195–230. http://data.europa.eu/eli/reg/2014/517/oj
ANSI/ASHRAE, 2013, “ Safety Standard for Refrigeration Systems,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, Standard No. 15-2013.
Yelishala, S. C. , Wang, Z. , Metghalchi, H. , and Levendis, Y. A. , 2018, “ Laminar Burning Speed of Propane/CO2/air Mixtures at Elevated Pressures and Temperatures,” ASTFE Third Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL, Mar. 4–7, pp. 317–320. https://www.researchgate.net/publication/325164663_LAMINAR_BURNING_SPEED_OF_PROPANECO2AIR_MIXTURES_AT_ELEVATED_PRESSURES_AND_TEMPERATURES
Metghalchi, H. , and Keck, J. C. , 1980, “ Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure,” Combust. Flame, 38, pp. 143–154. [CrossRef]
Ebaid, S. Y. , and Al-Khishali, J. M. , 2016, “ Measurements of Laminar Burning Velocity of Propane:Air Mixtures,” Adv. Mech. Eng., 8(6), pp. 1–17. [CrossRef]
Akram, M. , Kishore, V. R. , and Kumar, S. , 2012, “ Laminar Burning Velocity of Propane/CO2/N2-Air Mixtures at Elevated Temperatures,” Energy Fuel, 26(9), pp. 5509–5518. [CrossRef]
Yelishala, S. C. , Ma, X. , Wang, Z. , Levendis, Y. A. , and Metghalchi, H. , 2018, “ Assessment of Blends of Hydrocarbons and CO2 as Alternative Natural Refrigerants,” ASTFE Third Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL, Mar. 4–7, pp. 759–762. https://www.researchgate.net/publication/325160951_ASSESSMENT_OF_BLENDS_OF_HYDROCARBONS_AND_CO2_AS_ALTERNATIVE_NATURAL_REFRIGERANTS
Onaka, Y. , Miyara, A. , Tsubaki, K. , and Koyama, S. , 2009, “ Analysis of Heat Pump Cycle Using CO2/DME Mixture Refrigerant,” Trans. Jpn. Soc. Refrig. Air Cond. Eng., 26(3), pp. 245–252.
Kim, J. H. , Cho, J. M. , and Kim, M. S. , 2008, “ Cooling Performance of Several CO2/Propane Mixtures and Glide Matching With Secondary Heat Transfer Fluid,” Int. J. Refrig., 31(5), pp. 800–806. [CrossRef]
Parsinejad, F. , Matlo, M. , and Metghalchi, H. , 2004, “ A Mathematical Model for Schlieren and Shadowgraph Images of Transient Expanding Spherical Thin Flames,” ASME J. Eng. Gas Turbines Power, 126(2), pp. 241–7. [CrossRef]
Parsinejad, F. , Keck, J. C. , and Metghalchi, H. , 2007, “ On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames: A Theoretic and Experimental Study,” Exp. Fluids, 43(6), pp. 887–894. [CrossRef]
Askari, O. , Metghalchi, H. , Hannani, S. K. , Moghaddas, A. , Ebrahimi, R. , and Hemmati, H. , 2012, “ Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture,” ASME J. Energy Resour. Technol., 135(2), p. 021001. [CrossRef]
Askari, O. , Metghalchi, H. , Hannani, S. K. , Hemmati, H. , and Ebrahimi, R. , 2014, “ Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters,” ASME J. Energy Resour. Technol., 136(2), pp. 1–7. [CrossRef]
Bradley, D. , Gaskell, P. H. , and Gu, X. J. , 1996, “ Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study,” Combust. Flame, 104(1–2), pp. 176–198. [CrossRef]
Eisazadeh-Far, K. , Parsinejad, F. , and Metghalchi, H. , 2010, “ Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures,” Fuel, 89(5), pp. 1041–1049. [CrossRef]
Burke, M. P. , Chaos, M. , Dryer, F. L. , and Ju, Y. , 2010, “ Negative Pressure Dependence of Mass Burning Rates of H2/CO/O2/Diluent Flames at Low Flame Temperatures,” Combust. Flame, 157(4), pp. 618–631. [CrossRef]
Burke, M. P. , Chen, Z. , Ju, Y. , and Dryer, F. L. , 2009, “ Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames,” Combust. Flame, 156(4), pp. 771–779. [CrossRef]
Askari, O. , Vien, K. , Wang, Z. , Sirio, M. , and Metghalchi, H. , 2016, “ Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures,” Apply Energy, 179, pp. 451–462. [CrossRef]
Askari, O. , Wang, Z. , Vien, K. , Sirio, M. , and Metghalchi, H. , 2017, “ On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame,” Fuel, 190, pp. 90–103. [CrossRef]
Wang, Z. , Bai, Z. , Yelishala, S. C. , Yu, G. , and Metghalchi, H. , 2018, “ Effect of Diluent on Laminar Burning Speed and Flame Structure of Gas to Liquid Fuel-Air Mixtures at High Temperature and Moderate Pressures,” Fuel, 231, pp. 204–214. [CrossRef]
Askari, O. , Moghaddas, A. , Alholm, A. , Vein, K. , Alhazmi, B. , and Metghalchi, H. , 2016, “ Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model,” Combust. Flame, 168, pp. 20–31. [CrossRef]
Wang, Z. , Yelishala, S. C. , Bai, Z. , Yu, G. , and Metghalchi, H. , 2018, “ Effects of Diluent on Flame Structure and Laminar Burning Speed of GTL/Air Flames at Moderate Pressures and High Temperatures,” International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS), Guimarães, Portugal, June 17–22. https://www.researchgate.net/publication/326303971_Effects_of_diluent_on_flame_structure_and_laminar_burning_speed_of_GTLair_flames_at_moderate_pressures_and_high_temperatures
Wang, Z. , Alswat, M. , Yu, G. , Allehaibi, M. O. , and Metghalchi, H. , 2017, “ Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel-Air Mixtures at Moderate Pressures and High Temperatures,” Fuel, 209, pp. 529–537. [CrossRef]
Askari, O. , Elia, M. , Ferrari, M. , and Metghalchi, H. , 2016, “ Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures,” ASME J. Energy Resour. Technol., 139(1), p. 012204. [CrossRef]
Kadowaki, S. , Suzuki, H. , Kobayashi, H. , and Im, H. G. , 2005, “ The Unstable Behavior of Cellular Premixed Flames Induced by Intrinsic Instability,” Proc Combust Inst., 30(1), pp. 169–176. [CrossRef]
Law, C. K. , and Kwon, O. C. , 2004, “ Effects of Hydrocarbon Substitution on Atmospheric Hydrogen-Air Flame Propagation,” Int. J. Hydrogen Energy, 29(8), pp. 867–879. [CrossRef]
Sivashinsky, G. I. , 1977, “ Diffusional-Thermal Theory of Cellular Flames,” Combust. Sci. Technol., 15(3–4), pp. 137–146. [CrossRef]
Bechtold, J. K. , and Matalon, M. , 1987, “ Hydrodynamic and Diffusion Effects on the Stability of Spherically Expanding Flames,” Combust. Flame, 67(1), pp. 77–90. [CrossRef]
Sivashinsky, G. I. , 1983, “ Instabilities, Pattern Formation, and Turbulence in Flames,” Annu. Rev Fluid Mech., 15(1), pp. 179–99. [CrossRef]
Wu, F. , Liang, W. , Chen, Z. , Ju, Y. , and Law, C. K. , 2015, “ Uncertainty in Stretch Extrapolation of Laminar Flame Speed From Expanding Spherical Flames,” Proc. Combust. Inst., 35, pp. 663–670.
Metghalchi, M. , and Keck, J. C. , 1982, “ Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature,” Combust. Flame, 48, pp. 191–210. [CrossRef]
Elia, M. , Alinsky, M. , and Metghalchi, M. , 2001, “ Laminar Burning Velocity of Methane-Air-Diluent Mixtures,” ASME J. Eng. Gas Turbines Power, 123(1), pp. 190–196. [CrossRef]
Parsinejad, F. , Arcari, C. , and Metghalchi, H. , 2006, “ Flame Structure and Burning Speed of JP-10 Air Mixtures,” Combust Sci. Technol., 178(5), pp. 975–1000. [CrossRef]
Rahim, F. , Eisazadeh-Far, K. , Parsinejad, F. , Andrews, R. J. , and Metghalchi, H. , 2008, “ A Thermodynamic Model to Calculate Burning Speed of Methane-Air-Diluent Mixtures,” Int. J. Thermodyn., 11(4), pp. 151–161. http://dergipark.ulakbim.gov.tr/eoguijt/article/view/1034000223
Rahim, F. , Elia, M. , Ulinski, M. , and Metghalchi, M. , 2002, “ Burning Velocity Measurements of Methane-Oxygen-Argon Mixtures and an Application to Extend Methane-Air Burning Velocity Measurements,” Int. J. Engine Res., 3(2), pp. 81–92. [CrossRef]
Eisazadeh-Far, K. , Moghaddas, A. , Rahim, F. , and Metghalchi, H. , 2010, “ Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model,” Entropy, 12(12), pp. 2485–2496. [CrossRef]
Moghaddas, A. , Bennett, C. , Rokni, E. , and Metghalchi, H. , 2014, “ Laminar Burning Speeds and Flame Structures of Mixtures of Difluoromethane (HFC-32) and 1,1-Difluoroethane (HCF-152a) With Air at Elevated Temperatures and Pressures,” HVACR Res., 20, pp. 42–50. [CrossRef]
Eisazadeh-Far, K. , Parsinejad, F. , Metghalchi, H. , and Keck, J. C. , 2010, “ On Flame Kernel Formation and Propagation in Premixed Gases,” Combust. Flame, 157(12), pp. 2211–2221. [CrossRef]
Askari, O. , Beretta, G. P. , Eisazadeh-Far, K. , and Metghalchi, H. , 2016, “ On the Thermodynamic Properties of Thermal Plasma in Flame Kernel of Hydrocarbon/Air Premixed Gases,” Eur. Phys. J. D, 70, p. 159. [CrossRef]
Yu, G. , Askari, O. , Hadi, F. , Wang, Z. , Metghalchi, H. , Kannaiyan, K. , and Sadr, R. , 2017, “ Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid (GTL) Fuel,” ASME J. Energy Resour. Technol., 139(2), p. 022202. [CrossRef]
Bai, Z. , Wang, Z. , Yu, G. , Yang, Y. , and Metghalchi, H. , 2018, “ Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame,” ASME. J. Energy Resour. Technol., 141(2), p. 022206.
Moghaddas, A. , Bennett, C. , Eisazadeh-far, K. , and Metghalchi, H. , 2012, “ Measurement of Laminar Burning Speed and Determination of Onset of Autoignition of Jet-A/Air and JP-8/Air Mixtures in a Constant Volume Spherical Chamber,” ASME J. Energy Resour. Technol., 134(2), p. 022205.
Eisazadeh-Far, K. , Moghaddas, A. , Metghalchi, H. , and Keck, J. C. , 2011, “ The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames,” Fuel, 90(4), pp. 1476–1486. [CrossRef]
Rokni, E. , Moghaddas, A. , Askari, O. , and Metghalchi, H. , 2015, “ Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures,” ASME J. Energy Resour. Technol., 137(1), p. 012204. [CrossRef]
Chen, Z. , Qin, X. , Xu, B. , Ju, Y. , and Liu, F. , 2007, “ Studies of Radiation Absorption on Flame Speed and Flammability Limit of CO2 Diluted Methane Flames at Elevated Pressures,” Proc. Combust Inst., 31(2), pp. 2693–2700. [CrossRef]
Riviere, P. , and Soufiani, A. , 2012, “ Updated Band Model Parameters for H2O, CO2, CH4 and CO Radiation at High Temperature,” Int. J. Heat Mass Transfer, 55, pp. 3349–3358. [CrossRef]
Salicone, S. , 2006, Measurement Uncertainty: An Approach Via the Mathematical Theory of Evidence, Springer Science and Business Media, New York.
Eisazadeh-Far, K. , Moghaddas, A. , Al-Mulki, J. , and Metghalchi, H. , 2011, “ Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures,” Proc. Combust Inst., 33(1), pp. 1021–1027. [CrossRef]
Moghaddas, A. , Eisazadeh-Far, K. , and Metghalchi, H. , 2012, “ Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures,” Combust. Flame, 159(4), pp. 1437–1443. [CrossRef]
Askari, O. , Mimmo, E. , Matthew, F. , and Metghalchi, H. , 2017, “ Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures,” Appl. Energy, 189, pp. 568–577. [CrossRef]
Wang, H. , You, X. , Joshi, A. V. , Davis, S. G. , Laskin, A. , Egolfopoulos, F. , and Law, C. K. , 2007, “ USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds,” accessed Jan. 30, 2019, http://ignis.usc.edu/USC_Mech_II.htm

Figures

Grahic Jump Location
Fig. 3

Images of propane/air/CO2 mixture flames at different pressures and different equivalence ratios at a pi of 2 atm, Ti of 298 K and the CO2 concentration of 0.6

Grahic Jump Location
Fig. 2

Images of propane/air/CO2 mixture flames at different pressures and different CO2 concentrations at a pi of 2 atm, Ti of 298 K and an equivalence ratio of 1.2

Grahic Jump Location
Fig. 1

Schematic of the experimental facilities

Grahic Jump Location
Fig. 4

Schematic of laminar burning speed model

Grahic Jump Location
Fig. 5

Laminar burning speed for propane/air/CO2 mixtures along isentropes at different CO2 concentrations, Ti = 298 K, ϕ = 1, pi = 1 atm

Grahic Jump Location
Fig. 6

Laminar burning speed for propane/air/CO2 mixtures along isentropes at different CO2 concentrations, Ti = 298 K, ϕ = 1, pi = 2 atm

Grahic Jump Location
Fig. 7

Laminar burning speed for propane/air/CO2 mixtures along isentropes at different CO2 concentrations, Ti = 298 K, ϕ = 1, pi = 0.5 atm

Grahic Jump Location
Fig. 8

Laminar burning speed for propane/air/CO2 mixtures along isentropes at different pi of 0.5 atm, 1 atm, and 2 atm, Ti = 298 K, ϕ = 1.2, CO2 = 60%

Grahic Jump Location
Fig. 9

Laminar burning speed for propane/air/CO2 mixtures along isentropes at different equivalence ratios of 0.7, 1, 1.1, and 1.2, Ti = 298 K, pi = 1 atm, CO2 = 30%

Grahic Jump Location
Fig. 13

Experimental and modeling results of laminar burningspeed for propane/air/CO2 mixtures through at different unburned gas temperatures, ϕ = 1, p = 1 atm, CO2 = 60%

Grahic Jump Location
Fig. 10

Laminar burning speed for propane/air/CO2 mixtures along isentropes at different equivalence ratios of 0.8, 1, and 1.2, Ti = 298 K, pi = 0.5 atm, CO2 = 15%

Grahic Jump Location
Fig. 11

Experimental and modeling results of laminar burning speed for propane/air/CO2 mixtures at different CO2 concentrations, Tu = 300 K, p = 1 atm, ϕ = 1

Grahic Jump Location
Fig. 12

Experimental and modeling results of laminar burning speed for propane/air/CO2 mixtures through at different equivalence ratios, Tu = 300 K, p = 1 atm, CO2 = 30%, 60%

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In