Research Papers: Fuel Combustion

Understanding the Effect of Capacitive Discharge Ignition on Plasma Formation and Flame Propagation of Air–Propane Mixture

[+] Author and Article Information
Kwonse Kim

Mechanical Engineering Department,
Mississippi State University,
Starkville, MS 39762

Omid Askari

Mechanical Engineering Department,
Mississippi State University,
Starkville, MS 39762
e-mail: askari@me.msstate.edu

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received December 24, 2018; final manuscript received January 4, 2019; published online January 30, 2019. Editor: Hameed Metghalchi.

J. Energy Resour. Technol 141(8), 082201 (Jan 30, 2019) (14 pages) Paper No: JERT-18-1909; doi: 10.1115/1.4042480 History: Received December 24, 2018; Revised January 04, 2019

This work is an experimental and computational study to investigate the effect of capacitive discharge ignition (CDI) on plasma kernel formation and flame propagation of air–propane mixture. This paper is mainly focused on the plasma formation and flame propagation characteristics, pressure rise, propagation time, velocity field, and species concentrations. A conventional ignition system is used for comparison purpose. A constant volume combustion chamber with volume of 400 cm3 is designed for experimental study. This chamber is utilized to visualize the plasma formation as well as the flame propagation induced from two ignition sources. The experiments are performed in a wide range of operating conditions, i.e., initial pressure of 2–4 bar, temperature of 300 K, chamber wall temperature of 350 K, spark plug gaps of 1.0–1.5 mm, discharge duration of 1 ms, discharge energy of 500 mJ, and equivalence ratio of 0.5–1.0. The computational study is performed by ANSYS fluent using the partially premixed combustion (PPC) model having the same conditions as experimental study. It is shown that the average peak pressure in CDI increased by 5.79%, 4.84% and 4.36% at initial pressures of 2, 3, and 4 bar, respectively, comparing with conventional ignition. It could be determined that the impact of combustion pressure in CDI system is more significant than conventional ignition particularly in lean mixtures. Consequently, the flame propagation rate in CDI system, due to the large ionized kernel around the spark plug, can be significantly enhanced.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Verhelst, S. , Turner, J. W. , Sileghem, L. , and Vancoillie, J. , 2018, “ Methanol as a Fuel for Internal Combustion Engines,” Prog. Energy Combust. Sci., 70, pp. 43–88. [CrossRef]
Yue, Z. , and Reitz, R. D. , 2018, “ Numerical Investigation of Radiative Heat Transfer in Internal Combustion Engines,” Appl. Energy, 235, pp. 147–163. [CrossRef]
Tang, Q. , Liu, H. , Li, M. , Yao, M. , and Li, Z. , 2017, “ Study on Ignition and Flame Development in Gasoline Partially Premixed Combustion Using Multiple Optical Diagnostics,” Combust. Flame, 177, pp. 98–108. [CrossRef]
An, Y. , Jaasim, M. , Raman, V. , Hern Andez, P. , Erez, F. E. , Sim, J. , Chang, J. , Im, H. G. , and Johansson, B. , 2018, “ Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC) in Compression Ignition Engine With Low Octane Gasoline,” Energy, 158, pp. 181–191. [CrossRef]
Wang, Y. , Yao, M. , Li, T. , Zhang, W. , and Zheng, Z. , 2016, “ A Parametric Study for Enabling Reactivity Controlled Compression Ignition (RCCI) Operation in Diesel Engines at Various Engine Loads,” Appl. Energy, 175, pp. 389–402. [CrossRef]
Liu, Q. , Fu, J. , Zhu, G. , Li, Q. , Liu, J. , Duan, X. , and Guo, Q. , 2018, “ Comparative Study on Thermodynamics, Combustion and Emissions of Turbocharged Gasoline Direct Injection (GDI) Engine Under NEDC and Steady-State Conditions,” Energy Convers. Manag., 169, pp. 111–123. [CrossRef]
Askari, O. , Metghalchi, H. , Kazemzadeh Hannani, S. , Moghaddas, A. , Ebrahimi, R. , and Hemmati, H. , 2012, “ Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture,” ASME J. Energy Resour. Technol., 135(2), p. 021001. [CrossRef]
Askari, O. , Metghalchi, H. , Kazemzadeh Hannani, S. , Hemmati, H. , and Ebrahimi, R. , 2014, “ Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters,” ASME J. Energy Resour. Technol., 136(2), p. 022202. [CrossRef]
Kim, J. , Chun, M. , Song, S. , Baek, H.-K. , and Lee, S. W. , 2017, “ The Effects of Hydrogen on the Combustion, Performance and Emissions of a Turbo Gasoline Direct-Injection Engine With Exhaust Gas Recirculation,” Int. J. Hydrogen Energy, 42(39), pp. 25074–25087. [CrossRef]
Cho, H. M. , and He, B.-Q. , 2006, “ Spark Ignition Natural Gas Engines—A Review,” Energy Convers. Manag., 48(2), pp. 608–618. [CrossRef]
Eisazadeh-Far, K. , Parsinejad, F. , Metghalchi, H. , and Keck, J. C. , 2010, “ On Flame Kernel Formation and Propagation in Premixed Gases,” Combust. Flame, 157(12), pp. 2211–2221. [CrossRef]
Wan, H. , Gao, Z. , Ji, J. , Zhang, Y. , and Li, K. , 2018, “ Experimental and Theoretical Study on Flame Front Temperatures Within Ceiling Jets From Turbulent Diffusion Flames of n-Heptane Fuel,” Energy, 164, pp. 79–86. [CrossRef]
Vasiliev, L. L. , Burak, V. S. , Kulakov, A. G. , Mishkinis, D. A. , and Bohan, P. V. , 2000, “ Latent Heat Storage Modules for Preheating Internal Combustion Engines: Application to a Bus Petrol Engine,” Appl. Therm. Eng., 20(10), pp. 913–923. [CrossRef]
Gritti, F. , 2018, “ High-Resolution Turbulent Flow Chromatography,” J. Chromatogr. A, 1570, pp. 135–147. [CrossRef] [PubMed]
Badica, P. , Batalu, D. , Burdusel, M. , Grigoroscuta, M. A. , Aldica, G. V. , Enculescu, M. , Gabor, R. A. , Wang, Z. , Huang, R. , and Li, P. , 2018, “ Compressive Properties of Pristine and SiC-Te-Added MgB2 Powders, Green Compacts and Spark-Plasma-Sintered Bulks,” Ceram. Int., 44(9), pp. 10181–10191. [CrossRef]
Szwaja, S. , Ansari, E. , Rao, S. , Szwaja, M. , Grab-Rogalinski, K. , Naber, J. D. , and Pyrc, M. , 2018, “ Influence of Exhaust Residuals on Combustion Phases, Exhaust Toxic Emission and Fuel Consumption From a Natural Gas Fueled Spark-Ignition Engine,” Energy Convers. Manag., 165, pp. 440–446. [CrossRef]
Rincón, R. , Muñoz, J. , and Sáez, M. , 2013, “ Spectroscopic Characterization of Atmospheric Pressure Argon Plasmas Sustained With the Torche à Injection Axiale Sur Guide D'Ondes,” Spectrochim. Acta Part B, 81, pp. 26–35. [CrossRef]
Caliari, F. R. , Miranda, F. S. , Reis, D. A. P. , Filho, G. P. , Charakhovski, L. I. , and Essiptchouk, A. , 2016, “ Plasma Torch for Supersonic Plasma Spray at Atmospheric Pressure,” J. Mater. Process. Technol., 237, pp. 351–360. [CrossRef]
Dalvand, E. S. , Ebrahimi, M. , and Pouryoussefi, S. G. , 2018, “ Experimental Investigation, Modeling and Prediction of Transition From Uniform Discharge to Filamentary Discharge in DBD Plasma Actuators Using Artificial Neural Network,” Appl. Therm. Eng., 129, pp. 50–61. [CrossRef]
Duchmann, A. , Simon, B. , Tropea, C. , and Grundmann, S. , 2014, “ Dielectric Barrier Discharge Plasma Actuators for in-Flight Transition Delay,” AIAA J., 52(2), pp. 358–367. [CrossRef]
Park, J. , Henins, I. , Herrmann, H. W. , Selwyn, G. S. , and Hicks, R. F. , 2001, “ Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source,” J. Appl. Phys., 89(1), pp. 20–28. [CrossRef]
Nanto, T. , Nakahara, H. , Awaji, N. , Wakitani, M. , Shinoda, T. , Konno, K. , Yanagibashi, Y. , and Sakamoto, N. , 1999, “ Surface Discharge Plasma Display Including Light Shielding Film Between Adjacent Electrode Pairs,” IEEE Trans. Ind. Appl., 24(2), pp. 223–231. http://www.freepatentsonline.com/5952782.html
Starikovskii, A. Y. , Anikin, N. B. , Kosarev, I. N. , Mintoussov, E. I. , Nudnova, M. M. , Rakitin, A. E. , Roupassov, D. V. , Starikovskaia, S. M. , and Zhukov, V. P. , 2008, “ Nanosecond-Pulsed Discharges for Plasma-Assisted Combustion and Aerodynamics,” J. Propul. Power, 24(6), pp. 1182–1197. [CrossRef]
Masuda, S. , Akutsu, K. , Kuroda, M. , Awatsu, Y. , and Shibuya, Y. , 1988, “ A Ceramic-Based Ozonizer Using High-Frequency Discharge,” IEEE Trans. Ind. Appl., 24(2), pp. 223–231. [CrossRef]
Askari, O. , Beretta, G. P. , Eisazadeh-Far, K. , and Metghalchi, H. , 2016, “ On the Thermodynamic Properties of Thermal Plasma in the Flame Kernel of Hydrocarbon/Air Premixed Gases,” Eur. Phys. J. D, 70, p. 159.
Askari, O. , 2017, “ Thermodynamic Properties of Pure and Mixed Thermal Plasmas Over a Wide Range of Temperature and Pressure,” ASME J. Energy Resour. Technol., 140(3), p. 032202. [CrossRef]
Salunkhe, A. B. , Khot, V. M. , Phadatare, M. R. , and Pawar, S. H. , 2012, “ Combustion Synthesis of Cobalt Ferrite Nanoparticles—Influence of Fuel to Oxidizer Ratio,” J. Alloys Compd., 514, pp. 91–96. [CrossRef]
Cerny, P. , Bartos, P. , Olsan, P. , and Spatenka, P. , 2019, “ Hydrophobization of Cotton Fabric by Gliding Arc Plasma Discharge,” Curr. Appl. Phys., 19(2), pp. 128–136. [CrossRef]
Lee, T. , Puligundla, P. , and Mok, C. , 2018, “ Intermittent Corona Discharge Plasma Jet for Improving Tomato Quality,” J. Food Eng., 223, pp. 168–174. [CrossRef]
Murugapandiyan, P. , Ravimaran, S. , and William, J. , 2017, “ DC and Microwave Characteristics of Lg 50 nm T-gate In AlN/AlN/GaN HEMT for Future High Power RF Applications,” AEU–Int. J. Electron. Commun., 77, pp. 163–168. [CrossRef]
Chen, Q. , Sun, J. , and Zhang, X. , 2018, “ Kinetic Contribution of CO2/O2 Additive in Methane Conversion Activated by Non-Equilibrium Plasmas,” Chin. J. Chem. Eng., 26(5), pp. 1041–1050. [CrossRef]
Du, H. , Wang, H. , Yao, P. , Wang, J. , and Sun, Y. , 2018, “ In2O3 Nanofibers Surface Modified by Low-Temperature RF Plasma and Their Gas Sensing Properties,” Mater. Chem. Phys., 215, pp. 316–326. [CrossRef]
Attrash, M. , Kuntumalla, M. K. , and Hoffman, A. , 2019, “ Bonding, Structural Properties and Thermal Stability of Low Damage RF (N2) Plasma Treated Diamond (100) Surfaces Studied by XPS, LEED, and TPD,” Surf. Sci., 681, pp. 95–103. [CrossRef]
Yang, J. , Yang, F. , Hua, H. , Cao, Y. , Li, C. , and Fang, B. , 2018, “ A Bipolar Pulse Power Generator for Micro-EDM,” Procedia CIRP, 68, pp. 620–624. [CrossRef]
Filimonova, E. , Bocharov, A. , and Bityurin, V. , 2018, “ Influence of a Non-Equilibrium Discharge Impact on the Low Temperature Combustion Stage in the HCCI Engine,” Fuel, 228, pp. 309–322. [CrossRef]
Nakaya, S. , Iseki, S. , Gu, X. , Kobayashi, Y. , and Tsue, M. , 2016, “ Flame Kernel Formation Behaviors in Close Dual-Point Laser Breakdown Spark Ignition for Lean Methane/Air Mixtures,” Proc. Combust. Inst., 36(3), pp. 3441–3449. [CrossRef]
Zhang, Z. , and Tan, X. , 2012, “ Review of High Power Pulse Transformer Design,” Phys. Procedia, 32, pp. 566–574. [CrossRef]
Hwang, J. , Bae, C. , Park, J. , Choe, W. , Cha, J. , and Woo, S. , 2016, “ Microwave-Assisted Plasma Ignition in a Constant Volume Combustion Chamber,” Combust. Flame, 167, pp. 86–96. [CrossRef]
Poggiani, C. , Battistoni, M. , Grimaldi, C. N. , and Magherini, A. , 2015, “ Experimental Characterization of a Multiple Spark Ignition System,” Energy Procedia, 82, pp. 89–95. [CrossRef]
Zhao, S.-X. , 2016, “ Mode Transition and Hysteresis in Inductively Coupled Plasma Sources,” Plasma Science and Technology, InTech Open, Rijeka, Croatia.
Starikovskiy, A. , and Aleksandrov, N. , 2013, “ Plasma-Assisted Ignition and Combustion,” Prog. Energy Combust. Sci., 39(1), pp. 61–110. [CrossRef]
Kim, K. , and Choi, D. , 2018, “ Thermodynamic Kernel, IMEP, and Response Based on Three Plasma Energies,” J. Mech. Sci. Technol., 32(8), pp. 3983–3994. [CrossRef]
Bane, S. P. M. , Shepherd, J. E. , Kwon, E. , and Day, A. C. , 2011, “ Statistical Analysis of Electrostatic Spark Ignition of Lean H2/O2/Ar Mixtures 5,” Int. J. Hydrogen Energy, 36(3), pp. 2344–2350. [CrossRef]
Kinjo, T. , Senjyu, T. , Urasaki, N. , and Fujita, H. , 2006, “ Output Levelling of Renewable Energy by Electric Double-Layer Capacitor Applied for Energy Storage System,” IEEE Trans. Energy Convers., 21(1), pp. 221–227. [CrossRef]
Malesani, L. , Rossetto, L. , Tenti, P. , and Tomasin, P. , 1995, “ AC/DC/AC PWM Converter With Reduced Energy Storage in the DC Link,” IEEE Trans. Ind. Appl., 31(2), pp. 287–292. [CrossRef]
Miller, J. R. , and Simon, P. , 2008, “ Electrochemical Capacitors for Energy Management,” Science, 321(5889), pp. 651–652.
Teymourfar, R. , Asaei, B. , Iman-Eini, H. , and Nejati fard, R. , 2012, “ Stationary Super-Capacitor Energy Storage System to Save Regenerative Braking Energy in a Metro Line,” Energy Convers. Manag., 56, pp. 206–214. [CrossRef]
Zimont, V. L. , 2000, “ Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Combustion Model,” Exp. Therm. Fluid Sci., 21(1–3), pp. 179–186. [CrossRef]
Zimont, V. , Polifke, W. , Bettelini, M. , and Weisenstein, W. , 1998, “ An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure,” ASME J. Eng. Gas Turbines Power, 120(3), p. 526. [CrossRef]
Zimont, V. L. , and Trushin, Y. M. , 1969, “ Total Combustion Kinetics of Hydrocarbon Fuels,” Combust. Explos. Shock Waves, 5(4), pp. 391–394. [CrossRef]
Askari, O. , Vien, K. , Wang, Z. , Sirio, M. , and Metghalchi, H. , 2016, “ Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/air Flames at High Pressures and Temperatures,” Appl. Energy, 179, pp. 451–462. [CrossRef]
Askari, O. , Moghaddas, A. , Alholm, A. , Vein, K. , Alhazmi, B. , and Metghalchi, H. , 2016, “ Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model,” Combust. Flames, 168, pp. 20–31. [CrossRef]
Roy, S. , Zare, S. , and Askari, O. , 2018, “ Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline,” ASME J. Energy Resour. Technol., 141(2), p. 022205. [CrossRef]
Yu, G. , Askari, O. , Hadi, F. , Wang, Z. , Metghalchi, H. , Kannaiyan, K. , and Sadr, R. , 2017, “ Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel,” ASME J. Energy Resour. Technol., 139(2), p. 022202. [CrossRef]
Rokni, E. , Moghaddas, A. , Askari, O. , and Metghalchi, H. , 2015, “ Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2) /Air Mixtures,” ASME J. Energy Resour. Technol., 137(1), p. 012204. [CrossRef]
Askari, O. , Wang, Z. , Vien, K. , Sirio, M. , and Metghalchi, H. , 2017, “ On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame,” J. Fuel, 190, pp. 90–103. [CrossRef]
Yu, G. , Askari, O. , and Metghalchi, H. , 2017, “ Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed,” ASME J. Energy Resour. Technol., 140(1), p. 012204. [CrossRef]
Yu, G. , Metghalchi, H. , Askari, O. , and Wang, Z. , 2018, “ Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium,” ASME J. Energy Resour. Technol., 141(2), p. 022204. [CrossRef]
Askari, O. , Elia, M. , Ferrari, M. , and Metghalchi, H. , 2017, “ Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures,” Appl. Energy, 189, pp. 568–577. [CrossRef]
Askari, O. , Elia, M. , Ferrari, M. , and Metghalchi, H. , 2017, “ Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures,” ASME J. Energy Resour. Technol., 139(1), p. 012204. [CrossRef]
Zimont, V. L. , 1979, “ Theory of Turbulent Combustion of a Homogeneous Fuel Mixture at High Reynolds Numbers,” Combust. Explos. Shock Waves, 15(3), pp. 305–311. [CrossRef]
Zimont, V. L. , and Biagioli, F. , 2002, “ Gradient, Counter-Gradient Transport and Their Transition in Turbulent Premixed Flames,” Combust. Theory Model., 6(1), pp. 79–101. [CrossRef]
Lipatnikov, A. N. , and Chomiak, J. , 2002, “ Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations,” Prog. Energy Combust. Sci., 28(1), pp. 1–74. [CrossRef]
Karpov, V. , Lipatnikov, A. , and Imont, V. , 1996, “ A Test of an Engineering Model of Premixed Turbulent Combustion,” Symp. Combust., 26(1), pp. 249–257. [CrossRef]
Zimont, V. L. , Biagioli, F. , and Syed, K. , 2001, “ Modelling Turbulent Premixed Combustion in the Intermediate Steady Propagation Regime,” Prog. Comput. Fluid Dyn., 1(1/2/3), p. 14. [CrossRef]
Zimont, V. L. , 2015, “ Theoretical Study of Self-Ignition and Quenching Limits in a Catalytic Micro-Structured Burner and Their Sensitivity Analysis,” Chem. Eng. Sci., 134, pp. 800–812. [CrossRef]
Jaojaruek, K. , 2014, “ Mathematical Model to Predict Temperature Profile and Air–Fuel Equivalence Ratio of a Downdraft Gasification Process,” Energy Convers. Manag., 83, pp. 223–231. [CrossRef]
Nakamura, N. , Baika, T. , and Shibata, Y. , 1985, “ Multipoint Spark Ignition for Lean Combustion,” SAE Trans., 94, pp. 611–620.
Zervas, E. , Montagne, X. , Lahaye, J. , 2002, “ Emission of Alcohols and Carbonyl Compounds From a Spark Ignition Engine. Influence of Fuel and Air/Fuel Equivalence Ratio,” Environ. Sci. Technol., 36(11), pp. 2414–2421. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Schematic diagrams of (a) conventional ignition and (b) CDI systems

Grahic Jump Location
Fig. 2

Circuit diagrams of (a) conventional ignition and (b) CDI systems

Grahic Jump Location
Fig. 3

Schematic of experimental setup

Grahic Jump Location
Fig. 4

Input pulse signal algorithm

Grahic Jump Location
Fig. 5

Computational model design

Grahic Jump Location
Fig. 6

Simulation model and boundary conditions

Grahic Jump Location
Fig. 7

Voltage signal characteristics for conventional ignition and CDI systems

Grahic Jump Location
Fig. 8

Average maximum stored and breakdown voltages in terms of input frequency for different electrode gaps of 1, 1.25, and 1.5 mm

Grahic Jump Location
Fig. 9

Average maximum discharge voltage in terms of input frequency for different electrode gaps of 1, 1.25, and 1.5 mm

Grahic Jump Location
Fig. 10

Flame propagation snapshots in air/C3H8 mixture with different N2 dilution at initial pressure of 4 bar and a wide range of air/fuel equivalence ratios: (a) 0% N2, (b) 10% N2, (c) 20% N2, and (d) 30% N2

Grahic Jump Location
Fig. 11

Combustion pressure characteristics for a wide range of air/fuel equivalence ratios and dilutions: (a) conventional ignition system (experiment) and (b) CDI system (experiment), (c) conventional ignition system (simulation), and (d) CDI system (simulation)

Grahic Jump Location
Fig. 12

Flame propagation time at initial pressure of 4 bar, wide range of air/fuel equivalence ratios and four different nitrogen dilutions: (a) 0% N2 dilution, (b) 10% N2 dilution, (c) 20% N2 dilution, and (d) 30% N2 dilution

Grahic Jump Location
Fig. 13

Velocity field at three different propagation times of 5, 10 and 15 ms: (a) λ = 1.0, (b) λ = 1.2, (c) λ = 1.4, and (d) λ = 1.6

Grahic Jump Location
Fig. 14

Species mass fraction at initial pressure of 4 bar, propagation time of 10 ms, and different air/fuel equivalence ratios: (a) λ = 1.0, (b) λ = 1.2, (c) λ = 1.4, and (d) λ = 1.6



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In