0
Special Section on 2018 Clean Energy

Evaluating Laser-Induced Breakdown Spectroscopy Sensor Technology for Rapid Source Characterization of Rare Earth Elements

[+] Author and Article Information
Daniel A. Hartzler, Chet R. Bhatt, Jinesh C. Jain

National Energy Technology Laboratory,
U.S. Department of Energy,
Pittsburgh, PA 15236;
Leidos Research Support Team,
National Energy Technology Laboratory,
Pittsburgh, PA 15236

Dustin L. McIntyre

National Energy Technology Laboratory,
U.S. Department of Energy,
Morgantown, WV 26505
e-mail: Dustin.Mcintyre@netl.doe.gov

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received August 21, 2018; final manuscript received February 1, 2019; published online March 11, 2019. Assoc. Editor: Ashwani K. Gupta.The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States government purposes.

J. Energy Resour. Technol 141(7), 070704 (Mar 11, 2019) (7 pages) Paper No: JERT-18-1643; doi: 10.1115/1.4042747 History: Received August 21, 2018; Revised February 01, 2019

A prototype laser-induced breakdown spectroscopy (LIBS) sensor is tested for the determination of rare earth elements (Eu and Yb) in liquid and solid samples. The sensor head, built using a monolithic passively Q-switched (PQSW) Nd:YAG laser, produced a 1064 nm laser beam with ns pulses and an energy of 4.2 mJ. The measurements show good calibration linearity for both Eu and Yb with R2 values above 0.99 for all analyzed spectral lines in liquid and solid samples. Limits of detection (LODs) obtained were as low as 1 ppm, which are comparable to or better than those reported previously by using table top actively Q-switched systems. This study aims to develop a high sensitivity, field deployable sensor for characterizing existing and new sources of rare earth elements.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

U.S. DOE, 2011, “ Critical Materials Strategy,” U.S. Department of Energy, Washington, DC.
Ganguli, R. , and Cook, D. R. , 2018, “ Rare Earths: A Review of the Landscape,” MRS Energy Sustainability, 5, pp. 1–16.
Cornell, D. , 1993, “ Rare Earths From Supernova to Superconductor,” Pure Appl. Chem., 65(12), pp. 2453–2464. [CrossRef]
Noack, C. W. , Dzombak, D. A. , and Karamalidis, A. K. , 2014, “ Rare Earth Element Distributions and Trends in Natural Waters With a Focus on Groundwater,” Environ. Sci. Technol., 48(8), pp. 4317–4326. [CrossRef] [PubMed]
Haas, J. R. , Shock, E. L. , and Sassani, D. C. , 1995, “ Rare Earth Elements in Hydrothermal Systems: Estimates of Standard Partial Molal Thermodynamic Properties of Aqueous Complexes of the Rare Earth Elements at High Pressures and Temperatures,” Geochim. Cosmochim. Acta, 59(21), pp. 4329–4350. [CrossRef]
Douville, E. , Bienvenu, P. , Charlou, J. L. , Donval, J. P. , Fouquet, Y. , Appriou, P. , and Gamo, T. , 1999, “ Yttrium and Rare Earth Elements in Fluids From Various Deep-Sea Hydrothermal Systems,” Geochim. Cosmochim. Acta, 63(5), pp. 627–643. [CrossRef]
Michard, A. , 1989, “ Rare Earth Element Systematics in Hydrothermal Fluids,” Geochim. Cosmochim. Acta, 53(3), pp. 745–750. [CrossRef]
Cravotta, C. A., III. , 2008, “ Dissolved Metals and Associated Constituents in Abandoned Coal-Mine Discharges, Pennsylvania, USA—Part 1: Constituent Quantities and Correlations,” Appl. Geochem., 23(2), pp. 166–202. [CrossRef]
Da Silva, E. F. , Bobos, I. , Matos, J. X. , Patinha, C. , Reis, A. , and Fonseca, E. C. , 2009, “ Mineralogy and Geochemistry of Trace Metals and REE in Volcanic Massive Sulfide Host Rocks, Stream Sediments, Stream Waters and Acid Mine Drainage From the Lousal Mine Area (Iberian Pyrite Belt, Portugal),” Appl. Geochem., 24(3), pp. 383–401. [CrossRef]
Ayora, C. , Macias, F. , Torres, E. , Lozano, A. , Carrero, S. , Nieto, J.-M. , Pérez-López, R. , Fernandez- Martfnez, A. , and Castillo-Michel, H. , 2016, “ Recovery of Rare Earth Elements and Yttrium From Passive- Remediation Systems of Acid Mine Drainage,” Environ. Sci. Technol., 50(15), pp. 8255–8262. [CrossRef] [PubMed]
Laudal, D. A. , Benson, S. A. , Palo, D. , and Addleman, R. S. , 2018, “ Rare Earth Elements in North Dakota Lignite Coal and Lignite-Related Materials,” ASME J. Energy Resour. Technol., 140(6), p. 062205. [CrossRef]
NETL, U.S. DOE, 2018, “ Rare Earth Element Database,” National Energy Technology Laboratory, Pittsburgh, PA, accessed July 2018, https://edx.netl.doe.gov/ree/
Taggart, R. K. , Hower, J. C. , Dwyer, G. S. , and Hsu-Kim, H. , 2016, “ Trends in the Rare Earth Element Content of US-Based Coal Combustion Fly Ashes,” Environ. Sci. Technol., 50(11), pp. 5919–5926. [CrossRef] [PubMed]
Franus, W. , Wiatros-Motyka, M. M. , and Wdowin, M. , 2015, “ Coal Fly Ash as a Resource for Rare Earth Elements,” Environ. Sci. Pollut. Res., 22(12), pp. 9464–9474. [CrossRef]
Zawisza, B. , Pytlakowska, K. , Feist, B. , Polowniak, M. , Kita, A. , and Sitko, R. , 2011, “ Determination of Rare Earth Elements by Spectroscopic Techniques: A Review,” J. Anal. At. Spectrom., 26(12), pp. 2373–2390. [CrossRef]
Jain, J. C. , Neal, C. R. , and Hanchar, J. M. , 2001, “ Problems Associated With the Determination of Rare Earth Elements of a ‘Gem’ Quality Zircon by Inductively Coupled Plasma-Mass Spectrometry,” Geostand. Newsl., 25(2–3), pp. 229–237. [CrossRef]
Musazzi, S. , and Perini, U. , 2014, Laser-Induced Breakdown Spectroscopy, (Springer Series in Optical Sciences), Springer, Berlin, p. 182.
Singh, J. P. , Almirall, J. R. , Sabsabi, M. , and Miziolek, A. W. , 2011, “ Laser-Induced Breakdown Spectroscopy (LIBS),” Anal. Bioanal. Chem., 400(10), pp. 3191–3192
Unnikrishnan, V. , Nayak, R. , Devangad, P. , Tamboli, M. , Santhosh, C. , Kumar, G. , and Sardar, D. , 2013, “ Calibration Based Laser-Induced Breakdown Spectroscopy (LIBS) for Quantitative Analysis of Doped Rare Earth Elements in Phosphors,” Mater. Lett., 107, pp. 322–324. [CrossRef]
Martin, M. , Martin, R. C. , Allman, S. , Brice, D. , Wymore, A. , and Andre, N. , 2015, “ Quantification of Rare Earth Elements Using Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta, Part B, 114, pp. 65–73. [CrossRef]
Bhatt, C. R. , Jain, J. C. , Goueguel, C. L. , McIntyre, D. L. , and Singh, J. P. , 2018, “ Determination of Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy (LIBS),” Appl. Spectrosc., 72(1), pp. 114–121. [CrossRef] [PubMed]
Abedin, K. , Haider, A. , Rony, M. , and Khan, Z. , 2011, “ Identification of Multiple Rare Earths and Associated Elements in Raw Monazite Sands by Laser-Induced Breakdown Spectroscopy,” Opt. Laser Technol., 43(1), pp. 45–49. [CrossRef]
Bhatt, C. R. , Jain, J. C. , Goueguel, C. L. , McIntyre, D. L. , and Singh, J. P. , 2017, “ Measurement of Eu and Yb in Aqueous Solutions by Underwater Laser Induced Breakdown Spectroscopy,” Spectrochim. Acta, Part B, 137, pp. 8–12. [CrossRef]
Yun, J.-I. , Bundschuh, T. , Neck, V. , and Kim, J.-I. , 2001, “ Selective Determination of Europium (III) Oxide and Hydroxide Colloids in Aqueous Solution by Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc., 55(3), pp. 273–278. [CrossRef]
Alamelu, D. , Sarkar, A. , and Aggarwal, S. , 2008, “ Laser-Induced Breakdown Spectroscopy for Simultaneous Determination of Sm, Eu and Gd in Aqueous Solution,” Talanta, 77(1), pp. 256–261. [CrossRef] [PubMed]
Bhatt, C. R. , Yueh, F. Y. , and Singh, J. P. , 2017, “ Univariate and Multivariate Analyses of Rare Earth Elements by Laser-Induced Breakdown Spectroscopy,” Appl. Opt., 56(8), pp. 2280–2287. [CrossRef] [PubMed]
Jung, E. , Lee, D.-H. , Yun, J.-I. , Kim, J. , Yeon, J. , and Song, K. , 2011, “ Quantitative Determination of Uranium and Europium in Glass Matrix by Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta, Part B, 66(9–10), pp. 761–764. [CrossRef]
Manard, B. T. , Wylie, E. M. , and Willson, S. P. , 2018, “ Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS),” Appl. Spectrosc., 72(11), pp. 1653–1660.
Myhre, K. G. , Mehta, M. J. , Martin, M. Z. , and Du, M. , 2018, “ Laser Induced Breakdown Spectroscopy Analysis of Europium and Samarium in Aluminum Oxide,” Spectrochim. Acta Part B, 149, pp. 30–34. [CrossRef]
Hartzler, D. A. , Jain, J. C. , and McIntyre, D. L. , 2019, “ Development of a Subsurface LIBS Sensor for In Situ Groundwater Quality Monitoring With Applications in CO2 Leak Sensing in Carbon Sequestration,” Sci. Rep. (submitted).
Allan, D. W. , 1966, “ Statistics of Atomic Frequency Standards,” Proc. IEEE, 54(2), pp. 221–230. [CrossRef]
Witt, T. , and Reymann, D. , 2000, “ Using Power Spectra and Allan Variances to Characterise the Noise of Zener-Diode Voltage Standards,” IEE Proc. Sci., Meas. Technol., 147(4), pp. 177–182. [CrossRef]
Zhang, N. F. , 2008, “ Allan Variance of Time Series Models for Measurement Data,” Metrologia, 45(5), p. 549. [CrossRef]
Carson, C. G. , Goueguel, C. L. , Sanghapi, H. , Jain, J. , and McIntyre, D. , 2016, “ Evaluation of a Commercially Available Passively Q-Switched Nd: YAG Laser With LiF: Saturable Absorber for Laser-Induced Breakdown Spectroscopy,” Opt. Laser Technol., 79, pp. 146–152. [CrossRef]
Kramida, A. , Ralchenko, Y. , Reader, J. , and Team, N. A. , 2018, “ NIST Atomic Spectra Database (Ver. 5.5.6),” National Institute of Standards and Technology, Gaithersburg, MD.
Kennedy, P. K. , Hammer, D. X. , and Rockwell, B. A. , 1997, “ Laser-Induced Breakdown in Aqueous Media,” Prog. Quant. Electron., 21(3), pp. 155–248. [CrossRef]
Anabitarte, F. , Cobo, A. , and Lopez-Higuera, J. M. , 2012, “ Laser-Induced Breakdown Spectroscopy: Fundamentals, Applications, and Challenges,” ISRN Spectrosc., 2012, p. 285240.
Singh, J. P. , and Thakur, S. N. , 2007, Laser-induced Breakdown Spectroscopy, Elsevier, Amsterdam, The Netherlands.
Griem, H. , 1974, Spectral Line Broadening by Plasmas, Academic Press, New York.
Sakka, T. , Tamura, A. , Matsumoto, A. , Fukami, K. , Nishi, N. , and Thornton, B. , 2014, “ Effects of Pulse Width on Nascent Laser-Induced Bubbles for Underwater Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta Part B, 97, pp. 94–98. [CrossRef]
Thornton, B. , Sakka, T. , Masamura, T. , Tamura, A. , Takahashi, T. , and Matsumoto, A. , 2014, “ Long-Duration Nano-Second Single Pulse Lasers for Observation of Spectra From Bulk Liquids at High Hydrostatic Pressures,” Spectrochim. Acta Part B, 97, pp. 7–12. [CrossRef]
Lam, J. , Lombard, J. , Dujardin, C. , Ledoux, G. , Merabia, S. , and Amans, D. , 2016, “ Dynamical Study of Bubble Expansion Following Laser Ablation in Liquids,” Appl. Phys. Lett., 108(7), p. 074104. [CrossRef]
Angel, S. M. , Bonvallet, J. , Lawrence-Snyder, M. , Pearman, W. F. , and Register, J. , 2016, “ Underwater Measurements Using Laser Induced Breakdown Spectroscopy,” J. Anal. At. Spectrom., 31(1), pp. 328–336. [CrossRef]
Xu, H. , Mejean, G. , Liu, W. , Kamali, Y. , Daigle, J.-F. , Azarm, A. , Simard, P. , Mathieu, P. , Roy, G. , and Simard, J.-R. , 2007, “ Remote Detection of Similar Biological Materials Using Femtosecond Filament-Induced Breakdown Spectroscopy,” Appl. Phys. B, 87(1), pp. 151–156. [CrossRef]
Rai, S. , and Rai, A. K. , 2011, “ Characterization of Organic Materials by LIBS for Exploration of Correlation Between Molecular and Elemental LIBS Signals,” AIP Adv., 1(4), p. 042103. [CrossRef]
Rao, E. N. , Mathi, P. , Kalam, S. A. , Sreedhar, S. , Singh, A. K. , Jagatap, B. , and Rao, S. V. , 2016, “ Femtosecond and Nanosecond LIBS Studies of Nitroimidazoles: Correlation Between Molecular Structure and LIBS Data,” J. Anal. At. Spectrom., 31(3), pp. 737–750. [CrossRef]
El Haddad, J. , Canioni, L. , and Bousquet, B. , 2014, “ Good Practices in LIBS Analysis: Review and Advices,” Spectrochim. Acta Part B, 101, pp. 171–182. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic layout of LIBS sensor head. Pump telescope L1 = 6.2 mm and L2 = 11 mm aspheric lenses, beam expander L3 = −25 mm and L4 = 75 mm, aspheric focusing lens L5 = 10 mm, emission coupling lens L5 and L6 = 25 mm. DCM = 900 nm longwave pass dichroic mirror, M = aluminum mirror, BP = 1064 nm bandpass filter, PD = photodiode.

Grahic Jump Location
Fig. 2

Liquid solution SBR of spectral lines of Yb and Eu as a function of gate delay. Dashed lines are exponential fits to the decay curves from 200 to 1000 ns.

Grahic Jump Location
Fig. 3

Solid pellet SBR for a 10,000 ppm Eu pellet as a function of gate delay. Dashed lines are exponential fits to the decay curves from 2.5–10 ps.

Grahic Jump Location
Fig. 4

Liquid solution LIBS emission spectra and calibration curves of three atomic emission lines of Eu (a) and one atomic line of Yb (b). Spectra are of the 1000 ppm Eu or Yb samples. Error bars are twice the standard deviation of eight repeated measurements.

Grahic Jump Location
Fig. 5

Solid pellet LIBS emission spectra and calibration curves of three atomic emission lines and four ionic lines of Eu. Spectrum is obtained using the pellet containing 2500 ppm Eu. Error bars are one standard deviation of eight repeated measurements. Note that Fig. 4 uses two standard deviations instead of one. This was chosen for figure readability.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In