0
Special Section on 2018 Clean Energy

The Staged Thermal Conversion of Sewage Sludge in the Presence of Oxygen

[+] Author and Article Information
Halina Pawlak-Kruczek

Department of Boilers, Combustion
and Energy Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: halina.pawlak@pwr.edu.pl

Mateusz Wnukowski

Department of Boilers, Combustion
and Energy Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: mateusz.wnukowski@pwr.edu.pl

Krystian Krochmalny

Department of Boilers, Combustion and Energy
Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: krystian.krochmalny@pwr.edu.pl

Mateusz Kowal

Department of Boilers, Combustion
and Energy Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: mateusz.kowal@pwr.edu.pl

Marcin Baranowski

Department of Boilers, Combustion
and Energy Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: marcin.baranowski@pwr.edu.pl

Jacek Zgóra

Department of Boilers, Combustion
and Energy Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: jacek.zgora@pwr.edu.pl

Michał Czerep

Department of Boilers, Combustion
and Energy Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: michal.czerep@pwr.edu.pl

Michał Ostrycharczyk

Department of Boilers, Combustion
and Energy Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: michal.ostrycharczyk@pwr.edu.pl

Lukasz Niedzwiecki

Department of Boilers, Combustion
and Energy Processes,
Faculty of Mechanical and Power Engineering,
Wroclaw University of Science and Technology,
27 Wybrzeze Wyspianskiego,
Wroclaw 50-370, Poland
e-mail: lukasz.niedzwiecki@pwr.edu.pl

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received July 15, 2018; final manuscript received February 5, 2019; published online March 11, 2019. Assoc. Editor: Ashwani K. Gupta.

J. Energy Resour. Technol 141(7), 070701 (Mar 11, 2019) (8 pages) Paper No: JERT-18-1531; doi: 10.1115/1.4042822 History: Received July 15, 2018; Revised February 05, 2019

This study compares a staged thermal processing of the sewage sludge, with single step, integrated thermal processing. The aim of this study is to find the optimal conditions for drying and subsequently for carbonization/torrefaction of sewage sludge, regarding the energy consumption. This study presents the results of the drying tests performed at laboratory scale convective dryer for different parameters of drying agent (air). The tests were focused on finding and developing a method of drying that allows to minimize the energy consumption. Subsequently, both dry and vapothermal torrefaction was performed in the presence of oxygen. The kinetics of drying, using low quality heat as well as the properties of products and by-products of torrefaction in both regimes were determined. The process was characterized by mass yield and energy yield in both of the cases. There has been only scarce amount of literature studies published on the torrefaction of sewage sludge so far, without a detailed study of the composition of the torgas and tars of such origin. Performed study enables a comparison of two distinct scenarios of the processing, i.e., drying followed by dry torrefaction with a single stage of vapothermal torrefaction.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Topics: Sewage , Drying , Oxygen
Your Session has timed out. Please sign back in to continue.

References

Kacprzak, M. , Neczaj, E. , Fijałkowski, K. , Grobelak, A. , Grosser, A. , Worwag, M. , Rorat, A. , Brattebo, H. , Almås, Å. , and Singh, B. R. , 2017, “ Sewage Sludge Disposal Strategies for Sustainable Development,” Environ. Res., 156, pp. 39–46. [CrossRef] [PubMed]
Lee, L. H. , Wu, T. Y. , Shak, K. P. Y. , Lim, S. L. , Ng, K. Y. , Nguyen, M. N. , and Teoh, W. H. , 2018, “ Sustainable Approach to Biotransform Industrial Sludge Into Organic Fertilizer Via Vermicomposting: A Mini-Review,” J. Chem. Technol. Biotechnol., 93(4), pp. 925–935. [CrossRef]
Cieślik, B. M. , Namieśnik, J. , and Konieczka, P. , 2015, “ Review of Sewage Sludge Management: Standards, Regulations and Analytical Methods,” J. Cleaner Prod., 90, pp. 1–15. [CrossRef]
Andersen, A. , 2002, “ Disposal and Recycling Routes for Sewage Sludge—Part 4: Economic Report,” Office for Official Publications of the European Communities, Luxembourg, Report http://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal4.pdf.
Andersen, A. , 2001, “ Disposal and Recycling Routes for Sewage Sludge—Part 1: Sludge Use Acceptance,” Office for Official Publications of the European Communities, Luxembourg, Report http://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal1.pdf.
Gulyurtlu, I. , Lopes, M. H. , Abelha, P. , Cabrita, I. , and Oliveira, J. F. S. , 2006, “ The Study of Partitioning of Heavy Metals During Fluidized Bed Combustion of Sewage Sludge and Coal,” ASME J. Energy Resour. Technol., 128(2), pp. 104–110. [CrossRef]
Werle, S. , and Wilk, R. K. , 2010, “ A Review of Methods for the Thermal Utilization of Sewage Sludge: The Polish Perspective,” Renewable Energy, 35(9), pp. 1914–1919. [CrossRef]
Chen, G. , Yue, P. L. , and Mujumdar, A. S. , 2002, “ Sludge Dewatering and Drying,” Drying Technol., 20(4–5), pp. 883–916. [CrossRef]
Tunçal, T. , and Uslu, O. , 2014, “ A Review of Dehydration of Various Industrial Sludges,” Drying Technol., 32(14), pp. 1642–1654. [CrossRef]
Peeters, B. , 2010, “ Mechanical Dewatering and Thermal Drying of Sludge in a Single Apparatus,” Drying Technol., 28(4), pp. 454–459. [CrossRef]
Bennamoun, L. , Arlabosse, P. , and Léonard, A. , 2013, “ Review on Fundamental Aspect of Application of Drying Process to Wastewater Sludge,” Renewable Sustainable Energy Rev., 28, pp. 29–43. [CrossRef]
Deng, W. , Su, Y. , and Yu, W. , 2013, “ Theoretical Calculation of Heat Transfer Coefficient When Sludge Drying in a Nara-Type Paddle Dryer Using Different Heat Carriers,” Procedia Environ. Sci., 18, pp. 709–715. [CrossRef]
Ferrasse, J. H. , Arlabosse, P. , and Lecomte, D. , 2002, “ Heat, Momentum, and Mass Transfer Measurements in Indirect Agitated Sludge Dryer,” Drying Technol., 20(4–5), pp. 749–769. [CrossRef]
Arlabosse, P. , Chavez, S. , and Lecomte, D. , 2004, “ Method for Thermal Design of Paddle Dryers: Application to Municipal Sewage Sludge,” Drying Technol., 22(10), pp. 2375–2393. [CrossRef]
Moscicki, K. J. , Niedzwiecki, L. , Owczarek, P. , and Wnukowski, M. , 2014, “ Commoditization of Biomass: Dry Torrefaction and Pelletization—A Review,” J. Power Technol., 94(4), pp. 233–249. http://papers.itc.pw.edu.pl/index.php/JPT/article/view/562
Rokni, E. , Liu, Y. , Ren, X. , and Levendis, Y. , 2019, “ Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction and Air Flowrate,” ASME J. Energy Resour. Technol., 141(8), p. 082202. http://energyresources.asmedigitalcollection.asme.org/article.aspx?articleid=2722928
Pawlak-Kruczek, H. , Krochmalny, K. , Mościcki, K. , Zgóra, J. , Czerep, M. , Ostrycharczyk, M. , and Niedźwiecki, Ł. , 2017, “ Torrefaction of Various Types of Biomass in Laboratory Scale, Batch-Wise Isothermal Rotary Reactor and Pilot Scale, Continuous Multi-Stage Tape Reactor,” Eng. Prot. Environ., 20(4), pp. 457–472. [CrossRef]
Yin, Y. , Yin, J. , Zhang, W. , Tian, H. , Hu, Z. , Ruan, M. , Song, Z. , and Liu, L. , 2018, “ Effect of Char Structure Evolution During Pyrolysis on Combustion Characteristics and Kinetics of Waste Biomass,” ASME J. Energy Resour. Technol., 140(7), p. 072203. [CrossRef]
Magdziarz, A. , and Werle, S. , 2014, “ Analysis of the Combustion and Pyrolysis of Dried Sewage Sludge by TGA and MS,” Waste Manage., 34(1), pp. 174–179. [CrossRef]
Wilk, M. , Magdziarz, A. , Jayaraman, K. , Szymańska-Chargot, M. , and Gokalp, I. , 2019, “ Biomass and Bioenergy Hydrothermal Carbonization Characteristics of Sewage Sludge and Lignocellulosic Biomass. A Comparative Study,” Biomass Bioenergy, 120, pp. 166–175. [CrossRef]
Nyakuma, B. B. , Magdziarz, A. , and Werle, S. , 2016, “ Physicochemical, Thermal and Kinetic Analysis of Sewage Sludge,” Proc. ECOpole, 10(2), pp. 473–480. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-b99109e3-94d5-459e-b754-6ef9dfe97731
Magdziarz, A. , Wilk, M. , and Kosturkiewicz, B. , 2011, “ Investigation of Sewage Sludge Preparation for Combustion Process,” Chem. Process Eng., 32(4), pp. 299–309. http://journals.pan.pl/dlibra/publication/98193/edition/84630/content
Dhungana, A. , Basu, P. , and Dutta, A. , 2012, “ Effects of Reactor Design on the Torrefaction of Biomass,” ASME J. Energy Resour. Technol., 134(4), p. 041801. [CrossRef]
Howell, A. , Beagle, E. , and Belmont, E. , 2017, “ Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal,” ASME J. Energy Resour. Technol., 140(4), p. 042002. [CrossRef]
Chew, J. J. , and Doshi, V. , 2011, “ Recent Advances in Biomass Pretreatment—Torrefaction Fundamentals and Technology,” Renewable Sustainable Energy Rev., 15(8), pp. 4212–4222. [CrossRef]
Pulka, J. , Wiśniewski, D. , Gołaszewski, J. , and Białowiec, A. , 2016, “ Is the Biochar Produced From Sewage Sludge a Good Quality Solid Fuel?,” Arch. Environ. Prot., 42(4), pp. 125–134. [CrossRef]
Poudel, J. , Ohm, T. I. , Lee, S. H. , and Oh, S. C. , 2015, “ A Study on Torrefaction of Sewage Sludge to Enhance Solid Fuel Qualities,” Waste Manage., 40, pp. 112–118. [CrossRef]
Poudel, J. , Karki, S. , Gu, J. H. , Lim, Y. , and Oh, S. C. , 2017, “ Effect of Co-Torrefaction on the Properties of Sewage Sludge and Waste Wood to Enhance Solid Fuel Qualities,” J. Residuals Sci. Technol., 14(3), pp. 23–36.
Atienza-Martínez, M. , Fonts, I. , Ábrego, J. , Ceamanos, J. , and Gea, G. , 2013, “ Sewage Sludge Torrefaction in a Fluidized Bed Reactor,” Chem. Eng. J., 222, pp. 534–545. [CrossRef]
Atienza-Martínez, M. , Mastral, J. F. , Ábrego, J. , Ceamanos, J. , and Gea, G. , 2015, “ Sewage Sludge Torrefaction in an Auger Reactor,” Energy Fuels, 29(1), pp. 160–170. [CrossRef]
Huang, M. , Chang, C. C. , Yuan, M. H. , Chang, C. Y. , Wu, C. H. , Shie, J. L. , Chen, Y. H. , Chen, Y. H. , Ho, C. , Chang, W. R. , Yang, T. Y. , and Lin, F. C. , 2017, “ Production of Torrefied Solid Bio-Fuel From Pulp Industry Waste,” Energies, 10(7), p. 910. [CrossRef]
Huang, Y.-F. , Sung, H.-T. , Chiueh, P.-T. , and Lo, S.-L. , 2017, “ Microwave Torrefaction of Sewage Sludge and Leucaena,” J. Taiwan Inst. Chem. Eng., 70, pp. 236–243. [CrossRef]
Huang, Y.-F. , Sung, H.-T. , Chiueh, P.-T. , and Lo, S.-L. , 2016, “ Co-Torrefaction of Sewage Sludge and Leucaena by Using Microwave Heating,” Energy, 116, pp. 1–7. [CrossRef]
Pawlak-Kruczek, H. , Krochmalny, K. K. , Wnukowski, M. , and Niedzwiecki, L. , 2018, “ Slow Pyrolysis of the Sewage Sludge With Additives: Calcium Oxide and Lignite,” ASME J. Energy Resour. Technol., 140(6), p. 062206. [CrossRef]
Akinyemi, O. S. , Jiang, L. , Buchireddy, P. R. , Barskov, S. O. , Guillory, J. L. , and Holmes, W. , 2018, “ Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion,” ASME J. Energy Resour. Technol., 140(11), p. 112003. [CrossRef]
Tic, W. , Guziałowska-Tic, J. , Pawlak-Kruczek, H. , Woźnikowski, E. , Zadorożny, A. , Niedźwiecki, Ł. , Wnukowski, M. , Krochmalny, K. , Czerep, M. , Ostrycharczyk, M. , Baranowski, M. , Zgóra, J. , and Kowal, M. , 2018, “ Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge,” Energies, 11(4), p. 748. [CrossRef]
Pawlak-Kruczek, H. , Wnukowski, M. , Niedzwiecki, L. , Czerep, M. , Kowal, M. , Krochmalny, K. , Zgora, J. , Ostrycharczyk, M. , Baranowski, M. , Tic, W. J. , and Guzialowska-Tic, J. , 2019, “ Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge,” Energies, 12(1), p. 175. [CrossRef]
Huang, Y. W. , Chen, M. Q. , and Luo, H. F. , 2016, “ Nonisothermal Torrefaction Kinetics of Sewage Sludge Using the Simplified Distributed Activation Energy Model,” Chem. Eng. J., 298, pp. 154–161. [CrossRef]
Do, T. X. , Lim, Y. , Cho, H. , Shim, J. , Yoo, J. , Rho, K. , Choi, S.-G. , and Park, B.-Y. , 2017, “ Process Modeling and Energy Consumption of Fry-Drying and Torrefaction of Organic Solid Waste,” Drying Technol., 35(6), pp. 754–765. [CrossRef]
Lasek, J. A. , Kopczyński, M. , Janusz, M. , Iluk, A. , and Zuwała, J. , 2017, “ Combustion Properties of Torrefied Biomass Obtained From Flue Gas-Enhanced Reactor,” Energy, 119, pp. 362–368. [CrossRef]
Joshi, Y. , Di Marcello, M. , Krishnamurthy, E. , and De Jong, W. , 2015, “ Packed-Bed Torrefaction of Bagasse Under Inert and Oxygenated Atmospheres,” Energy Fuels, 29(8), pp. 5078–5087. [CrossRef]
Uemura, Y. , Saadon, S. , Osman, N. , Mansor, N. , and Tanoue, K. I. , 2015, “ Torrefaction of Oil Palm Kernel Shell in the Presence of Oxygen and Carbon Dioxide,” Fuel, 144, pp. 171–179. [CrossRef]
Uemura, Y. , Omar, W. , Othman, N. A. , Yusup, S. , and Tsutsui, T. , 2013, “ Torrefaction of Oil Palm EFB in the Presence of Oxygen,” Fuel, 103, pp. 156–160. [CrossRef]
Chen, W. H. , Zhuang, Y. Q. , Liu, S. H. , Juang, T. T. , and Tsai, C. M. , 2016, “ Product Characteristics From the Torrefaction of Oil Palm Fiber Pellets in Inert and Oxidative Atmospheres,” Bioresour. Technol., 199, pp. 367–374. [CrossRef] [PubMed]
Chen, W. H. , Lu, K. M. , Liu, S. H. , Tsai, C. M. , Lee, W. J. , and Lin, T. C. , 2013, “ Biomass Torrefaction Characteristics in Inert and Oxidative Atmospheres at Various Superficial Velocities,” Bioresour. Technol., 146, pp. 152–160. [CrossRef] [PubMed]
Lu, K. M. , Lee, W. J. , Chen, W. H. , Liu, S. H. , and Lin, T. C. , 2012, “ Torrefaction and Low Temperature Carbonization of Oil Palm Fiber and Eucalyptus in Nitrogen and Air Atmospheres,” Bioresour. Technol., 123, pp. 98–105. [CrossRef] [PubMed]
Funke, A. , Reebs, F. , and Kruse, A. , 2013, “ Experimental Comparison of Hydrothermal and Vapothermal Carbonization,” Fuel Process. Technol., 115, pp. 261–269. [CrossRef]
CEN (European Committee for Standardization), 2015, “ Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 1: Total Moisture—Reference Method,” European Committee for Standardization, Brussels, Belgium, Standard No. EN ISO 18134-1:2015.
CEN (European Committee for Standardization), 2009, “ Solid Biofuels—Determination of the Content of Volatile Matter,” European Committee for Standardization, Brussels, Belgium, Standard No. EN 15148:2009.
CEN (European Committee for Standardization), 2015, “ Solid Biofuels—Determination of Ash Content,” European Committee for Standardization, Brussels, Belgium, Standard No. EN ISO 18122:2015.
CEN (European Committee for Standardization), 2009, “ Solid Biofuels—Determination of Calorific Value,” European Committee for Standardization, Brussels, Belgium, Standard No. EN 14918.
Bergman, P. C. A. , Boersma, A. R. , Kiel, J. H. A. , Prins, M. J. , Ptasinski, K. J. , and Janssen, F. J. J. , 2004, “ Torrefaction for Entrained-Flow Gasification of Biomass,” Second World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy, May 10–14, Paper No. ECN-C--05-067 https://www.ecn.nl/docs/library/report/2005/c05067.pdf.

Figures

Grahic Jump Location
Fig. 1

Diagram of the heated wall drying test rig: 1—heating plate; 2—hot air distribution manifold; 3—sample of the sewage sludge; 4—stainless steel mesh; 5—moist air outlet; 6—air heater; 7—rotameter; 8—control valve; 9—blower

Grahic Jump Location
Fig. 2

Diagram of the torrefaction batch reactor: TC1—thermocouple measuring temperature at the bottom of the layer; TC2—thermocouple measuring temperature at the top of the layer; TC3—thermocouple connected to the programmable logic controller; SS—sewage sludge layer; IB—isopropanol bath; WB—water bath; nondispersive infra red—nondispersive infrared gas analyzer; FTIR—Fourier transform infrared gas analyzer

Grahic Jump Location
Fig. 3

Moisture content of the sample of dried sewage sludge depending on the residence time

Grahic Jump Location
Fig. 4

Average concentration of major gaseous compounds present in torgas

Grahic Jump Location
Fig. 5

Concentration of minor compounds present in torgas

Grahic Jump Location
Fig. 6

Concentration of condensable compounds in torgas—results of quantitative analysis

Grahic Jump Location
Fig. 7

Concentration of condensable compounds in torgas—results of qualitative analysis

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In