0
Research Papers: Alternative Energy Sources

On the Assessment of a Numerical Weather Prediction Model for Solar Photovoltaic Power Forecasts in Cities

[+] Author and Article Information
Harold Gamarro

Mechanical Engineering Department,
The City College of New York,
160 Convent Avenue,
New York, NY 10031
e-mail: hgamarr00@citymail.cuny.edu

Jorge E. Gonzalez

Fellow ASME
NOAA-CREST Professor of Mechanical Engineering
The City College of New York,
160 Convent Avenue,
New York, NY 10031
e-mail: jgonzalezcruz@ccny.cuny.edu

Luis E. Ortiz

Mechanical Engineering Department,
The City College of New York,
160 Convent Avenue,
New York, NY 10031
e-mail: lortiz10@citymail.cuny.edu

1Corresponding author.

Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received October 7, 2018; final manuscript received February 14, 2019; published online March 29, 2019. Assoc. Editor: Reza Baghaei Lakeh.

J. Energy Resour. Technol 141(6), 061203 (Mar 29, 2019) (7 pages) Paper No: JERT-18-1766; doi: 10.1115/1.4042972 History: Received October 07, 2018; Revised February 14, 2019

Recent developments in the weather research and forecasting (WRF) model have made it possible to accurately estimate incident solar radiation. This study couples the WRF-solar modifications with a multilayer urban canopy and building energy model (BEM) to create a unified WRF forecasting system called urban WRF–solar (uWRF-solar). This paper tests the integrated approach in the New York City (NYC) metro region as a sample case. Hourly forecasts are validated against ground station data collected at ten different sites in and around the city. Validation is carried out independently for clear, cloudy, and overcast sky conditions. Results indicate that the uWRF-solar model can forecast solar irradiance considerably well for the global horizontal irradiance (GHI) with an R2 value of 0.93 for clear sky conditions, 0.61 for cloudy sky conditions, and finally, 0.39 for overcast conditions. Results are further used to directly forecast solar power production in the region of interest, where evaluations of generation potential are done at the city scale. Outputs show a gradient of power generation produced by the potential available solar energy on the entire uWRF-solar grid. In total, the city has a city photovoltaic (PV) potential of 118 kWh/day/m2 and 3.65 MWh/month/m2.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Topics: Solar energy , Cities
Your Session has timed out. Please sign back in to continue.

References

Brancucci Martinez-Anido, C. , Botor, B. , Florita, A. R. , Draxl, C. , Lu, S. , Hamann, H. F. , and Hodge, B. M. , 2016, “ The Value of Day-Ahead Solar Power Forecasting Improvement,” Sol. Energy, 129, pp. 192–203. [CrossRef]
Yang, D. , Kleissl, J. , Gueymard, C. A. , Pedro, H. T. C. , and Coimbra, C. F. M. , 2018, “ History and Trends in Solar Irradiance and PV Power Forecasting: A Preliminary Assessment and Review Using Text Mining,” Sol. Energy, 168, pp. 60–101. [CrossRef]
Paulescu, M. , Paulescu, E. , Gravila, P. , and Badescu, V. , 2013, Weather Modeling and Forecasting of PV Systems Operation, Vol. 103, Green Energy Technology, Springer, London.
Sengupta, M. , Habte, A. , Gueymard, C. , Wilbert, S. , and Renne, D. , 2017, “ Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-5D00-68886.
Descombes, G. , Auligné, T. , Lin, H.-C. , Xu, D. , Schwartz, C. , and Vandenberghe, F. , 2014, “ Multi-Sensor Advection Diffusion NowCast (MADCast) for Cloud Analysis and Short-Term Prediction,” National Center for Atmospheric Researcher, Boulder, CO, Technical Report No. NCAR/TN-509+STR.
Perez, R. , Lorenz, E. , Pelland, S. , Beauharnois, M. , Van Knowe, G. , Hemker, K. , Heinemann, D. , Remund, J. , Müller, S. C. , Traunmüller, W. , Steinmauer, G. , Pozo, D. , Ruiz-Arias, J. A. , Lara-Fanego, V. , Ramirez-Santigosa, L. , Gaston-Romero, M. , and Pomares, L. M. , 2013, “ Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe,” Sol. Energy, 94, pp. 305–326. [CrossRef]
Skamarock, W. C. , Klemp, J. B. , Dudhi, J. , Gill, D. O. , Barker, D. M. , Duda, M. G. , Huang, X.-Y. , Wang, W. , and Powers, J. G. , 2008, “ A Description of the Advanced Research WRF Version 3,” National Center for Atmospheric Research, Boulder, CO, Technical Report No. NCAR/TN-475+STR.
Lara-Fanego, V. , Ruiz-Arias, J. A. , Pozo-Vázquez, D. , Santos-Alamillos, F. J. , and Tovar-Pescador, J. , 2012, “ Evaluation of the WRF Model Solar Irradiance Forecasts in Andalusia (Southern Spain),” Sol. Energy, 86(8), pp. 2200–2217. [CrossRef]
Ruiz-Arias, J. A. , Dudhia, J. , Santos-Alamillos, F. J. , and Pozo-Vázquez, D. , 2013, “ Surface Clear-Sky Shortwave Radiative Closure Intercomparisons in the Weather Research and Forecasting Model,” J. Geophys. Res. Atmos., 118(17), pp. 9901–9913. [CrossRef]
Aryaputera, A. W. , Yang, D. , and Walsh, W. M. , 2015, “ Day-Ahead Solar Irradiance Forecasting in a Tropical Environment,” ASME J. Sol. Energy Eng., 137(5), p. 051009. [CrossRef]
Fountoukis, C. , Martín-Pomares, L. , Perez-Astudillo, D. , Bachour, D. , and Gladich, I. , 2018, “ Simulating Global Horizontal Irradiance in the Arabian Peninsula: Sensitivity to Explicit Treatment of Aerosols,” Sol. Energy, 163, pp. 347–355. [CrossRef]
Jimenez, P. A. , Hacker, J. P. , Dudhia, J. , Haupt, S. E. , Ruiz-Arias, J. A. , Gueymard, C. A. , Thompson, G. , Eidhammer, T. , and Deng, A. , 2016, “ WRF-SOLAR: Description and Clear-Sky Assessment of an Augmented NWP Model for Solar Power Prediction,” Bull. Am. Meteorol. Soc., 97(7), pp. 1249–1264. [CrossRef]
Martilli, A. , 2002, “ Numerical Study of Urban Impact on Boundary Layer Structure: Sensitivity to Wind Speed, Urban Morphology, and Rural Soil Moisture,” J. Appl. Meteorol., 41(12), pp. 1247–1266. [CrossRef]
Chen, F. , Kusaka, H. , Bornstein, R. , Ching, J. , Grimmond, C. S. B. , Grossman-Clarke, S. , Loridan, T. , Manning, K. W. , Martilli, A. , Miao, S. , Sailor, D. , Salamanca, F. P. , Taha, H. , Tewari, M. , Wang, X. , Wyszogrodzki, A. A. , and Zhang, C. , 2011, “ The Integrated WRF/Urban Modelling System: Development, Evaluation, and Applications to Urban Environmental Problems,” Int. J. Climatol., 31(2), pp. 273–288. [CrossRef]
Martilli, A. , Clappier, A. , and Rotach, M. W. , 2002, “ An Urban Surface Exchange Parameterisation for Mesoscale Models,” Boundary-Layer Meteorol., 104(2), pp. 261–304. [CrossRef]
Salamanca, F. , Krpo, A. , Martilli, A. , and Clappier, A. , 2010, “ A New Building Energy Model Coupled With an Urban Canopy Parameterization for Urban Climate Simulations—Part I: Formulation, Verification, and Sensitivity Analysis of the Model,” Theor. Appl. Climatol., 99(3–4), pp. 331–344. [CrossRef]
Ortiz, L. E. , Gonzalez, J. E. , Wu, W. , Schoonen, M. , Tongue, J. , and Bornstein, R. , 2018, “ New York City Impacts on a Regional Heat Wave,” J. Appl. Meteorol. Climatol., 57(4), pp. 837–851. [CrossRef]
Gutiérrez, E. , González, J. E. , Bornstein, R. , Arend, M. , and Martilli, A. , 2013, “ A New Modeling Approach to Forecast Building Energy Demands During Extreme Heat Events in Complex Cities,” ASME J. Sol. Energy Eng., 135(4), pp. 40906–40907. [CrossRef]
Wong, K. V. , Paddon, A. , and Jimenez, A. , 2013, “ Review of World Urban Heat Islands: Many Linked to Increased Mortality,” ASME J. Energy Resour. Technol., 135(2), p. 022101. [CrossRef]
Ruiz-Arias, J. A. , Dudhia, J. , and Gueymard, C. A. , 2014, “ A Simple Parameterization of the Short-Wave Aerosol Optical Properties for Surface Direct and Diffuse Irradiances Assessment in a Numerical Weather Model,” Geosci. Model Dev., 7(3), pp. 1159–1174. [CrossRef]
Thompson, G. , and Eidhammer, T. , 2014, “ A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone,” J. Atmos. Sci., 71(10), pp. 3636–3658.
Ginoux, P. , Chin, M. , Tegen, I. , Prospero, J. M. , Holben, B. , Dubovik, O. , and Lin, S. J. , 2001, “ Sources and Distributions of Dust Aerosols Simulated With the GOCART Model,” J. Geophys. Res. Atmos., 106(D17), pp. 20255–20273. [CrossRef]
Ortiz, L. E. , Gonzalez, J. E. , Gutierrez, E. , and Arend, M. , 2016, “ Forecasting Building Energy Demands With a Coupled Weather-Building Energy Model in a Dense Urban Environment,” ASME J. Sol. Energy Eng., 139(1), p. 011002. [CrossRef]
Tewari, M. , Chen, F. , Wang, W. , Dudhia, J. , LeMone, M. A. , Mitchell, K. , Ek, M. , Gayno, G. , Wegiel, J. , and Cuenca, R. H. , 2004, “ Implementation and Verification of the Unified Noah Land Surface Model in the WRF Model,” 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, Jan 10–15, pp. 11–15.
Iacono, M. J. , Delamere, J. S. , Mlawer, E. J. , Shephard, M. W. , Clough, S. A. , and Collins, W. D. , 2008, “ Radiative Forcing by Long-Lived Greenhouse Gases: Calculations With the AER Radiative Transfer Models,” J. Geophys. Res. Atmos., 113(13), pp. 2–9.
Janjić, Z. I. , 1994, “ The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes,” Mon. Weather Rev., 122(5), pp. 927–945. [CrossRef]
Zhang, J. , Florita, A. , Hodge, B.-M. , Lu, S. , Hamann, H. F. , Banunarayanan, V. , and Brockway, A. M. , 2015, “ A Suite of Metrics for Assessing the Performance of Solar Power Forecasting,” Sol. Energy, 111, pp. 157–175. [CrossRef]
Reno, M. J. , and Hansen, C. W. , 2016, “ Identification of Periods of Clear Sky Irradiance in Time Series of GHI Measurements,” Renewable Energy, 90, pp. 520–531. [CrossRef]
Holmgren, W. F. , Andrews, R. W. , Lorenzo, A. T. , and Stein, J. S. , 2015, “ PVLIB Python,” IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, June 14–19, pp. 3425–3430.
Skoplaki, E. , and Palyvos, J. A. , 2009, “ On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations,” Sol. Energy, 83(5), pp. 614–624. [CrossRef]
Liu, B. Y. H. , and Jordan, R. C. , 1963, “ A Rational Procedure for Predicting the Long-Term Average Performance of Flat-Plate Solar-Energy Collectors,” Sol. Energy, 7(2), pp. 53–74. [CrossRef]
Mattei, M. , Notton, G. , Cristofari, C. , Muselli, M. , and Poggi, P. , 2006, “ Calculation of the Polycrystalline PV Module Temperature Using a Simple Method of Energy Balance,” Renewable Energy, 31(4), pp. 553–567. [CrossRef]
Evans, D. L. , 1981, “ Simplified Method for Predicting Photovoltaic Array Output,” Sol. Energy, 27(6), pp. 555–560. [CrossRef]
Duffie, J. A. , and Beckman, W. A. , 2006, Solar Engineering of Thermal Processes, 3rd ed., Wiley, Hoboken, NJ, p. 166.

Figures

Grahic Jump Location
Fig. 1

Pluto data building height and area fraction at 100 m resolution, regridded at a spatial resolution of 1 km

Grahic Jump Location
Fig. 2

Outer 9 km domain and the nested 3 km and 1 km domain (d02, d03) used by the uWRF-solar model

Grahic Jump Location
Fig. 3

Map detailing the location of all the meteorological stations where the NYC sites are highlighted with a red marker and the New Jersey sites are highlighted with a blue marker

Grahic Jump Location
Fig. 4

Visual representation of the clear sky detection algorithm for Brooklyn, NY. Measured GHI is in blue, with red markers signifying a clear time.

Grahic Jump Location
Fig. 5

(a) Mean 3PM PV Power over the entire model domain and (b) average daily total power over entire model domain

Grahic Jump Location
Fig. 6

(a) Mean 3PM PV Power using building area fraction and (b) average daily total power using building area fraction

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In