The planar motion of the human knee joint is modeled, involving the relative motion of the geometry of the contacting surface between the tibia and the femur. The pure gliding motion and the pure rolling motion are formulated including the holonomic and nonholonomic constraints that must be satisfied. A control strategy with two classes of inputs: muscle forces that stabilize and bring about the motion and the ligament forces that maintain the constraints is presented. Finally, the effectiveness of this control structure is demonstrated via digital computer simulations in the pure gliding motion and the pure rolling motion of the knee.
Issue Section:
Research Papers
This content is only available via PDF.
Copyright © 1984
by ASME
You do not currently have access to this content.