Background: The shear properties of rigid polyurethane (PU-R) foams, routinely used to simulate cancellous bone, are not well characterized. Method of approach: The present assessment of the shear and compressive properties of four grades of Sawbones “Rigid cellular” PU-R foam tested 20 mm gauge diameter dumb-bell specimens in torsion and under axial loading. Results: Shear moduli ranged from 13.3 to 99.7 MPa, shear strengths from 0.7 MPa to 4.2 MPa. Compressive yield strains varied little with density while shear yield strains had peak values with “200 kgm−3” grade. Conclusions: PU-R foams may be used to simulate the elastic but not failure properties of cancellous bone.
Issue Section:
Soft Tissues
Keywords:
foams,
polymers,
shear strength,
yield strength,
compressive strength,
biomechanics,
bone,
torsion,
density,
shear modulus
Topics:
Bone,
Density,
Foams (Chemistry),
Shear (Mechanics),
Shear modulus,
Shear strength,
Torsion,
Urethane foam,
Failure,
Gages
1.
Wilsea
, M.
, Johnson
, K. L.
, and Ashby
, M. F.
, 1975
, “Indentation of Foamed Plastics
,” International Journal of Mechanical Sciences
, 17
, pp. 457
–460
.2.
Szivek
, J. A.
, Thompson
, J. D.
, and Benjamin
, J. B.
, 1995
, “Characterization of Three Formulations of a Synthetic Foam as Models for a Range of Human Cancellous Bone Types
,” J. Appl. Biomater
, 6
, pp. 125
–128
.3.
Goods
, S. H.
, Neuschwanger
, C. L.
, Henderson
, C. C.
, and Skala
, D. M.
, 1998
, “Mechanical Properties of CRETE, a Polyurethane Foam
,” J. Appl. Polym. Sci.
, 68
, pp. 1045
–1055
.4.
Palissery, V., Taylor, M., and Browne, M. 2001, “Characterization of Static and Fatigue Behavior of a Polyurethane Foam Material to Model Cancellous Bone.” T149 Proceedings of the European Society for Biomaterials, 2001 Conference, London.
5.
Gibson
, L. J.
, and Ashby
, M. F.
, 1982
, “The Mechanics of Three-Dimensional Cellular Materials
,” Proc. R. Soc. London
, A382
, pp. 43
–59
.6.
Farshad
, M.
, Wildenberg
, M. W.
, and Flu¨eler
, P.
, 1997
, “Determination of Shear Modulus and Poisson’s Ratio of Polymers and Foams by the Anticlastic Plate-Bending Method
,” Mater. Struct.
, 30
, pp. 377
–382
.7.
Harrigan
, T. P.
, Jasty
, M.
, Mann
, R. W.
, and Harris
, W. H.
, 1988
, “Limitations of the Continuum Assumption in Cancellous Bone
,” J. Biomech.
, 21
, pp. 269
–275
.8.
Onck
, P. R.
, Andrews
, E. W.
, and Gibson
, L. J.
, 2001
, “Size Effects in Ductile Cellular Solids. Part 1: Modeling
,” International Journal of Mechanical Sciences
, 43
, pp. 681
–699
.9.
Gibson, I. J., Ashby, M. F., 1997, “The Mechanics of Foams: Basic Results.” In: Cellular Solids: Structure and Properties, CUP, Cambridge, pp. 175–234.
10.
Patel
, M. R.
, and Finnie
, I.
, 1970
, “Structural Features and Mechanical Properties of Rigid Cellular Plastics
,” Journal of Materials
, 5
, pp. 909
–932
.11.
Currey
, J. D.
, 1998
, “Mechanical Properties of Vertebrate Hard Tissues
,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
, 212
, pp. 399
–411
.12.
Knauss
, P.
, 1981
, “Materialkennwerte und Fesitgkeitsverhalten des spongio¨sen Knochengewebes am coxalen Human-Femur
,” Biomedizinische Technik
, 26
, pp. 200
–210
.Copyright © 2003
by ASME
You do not currently have access to this content.