The transport and deposition of nanoparticles, i.e., dp=12nm, or equivalent vapors, in the human nasal cavities is of interest to engineers, scientists, air-pollution regulators, and healthcare officials alike. Tiny ultrafine particles, i.e., dp5nm, are of special interest because they are most rapidly absorbed and hence have an elevated toxic or therapeutic impact when compared to larger particles. Assuming transient laminar 3-D incompressible flow in a representative human nasal cavity, the cyclic airflow pattern as well as local and overall nanoparticle depositions were computationally simulated and analyzed. The focus was on transient effects during inhalation/exhalation as compared to the steady-state assumption typically invoked. Then, an equation for a matching steady-state inhalation flow rate was developed that generates the same deposition results as cyclic inhalation. Of special interest is the olfactory region where the narrow channel surfaces receive only about one-half of a percent of the inhaled nanoparticles because the airflow bypasses these recesses located in the superior-most portions in the geometrically complex nasal cavities.

1.
International Commission on Radiological Protection (ICRP)
, 1994, “
Human Respiratory Tract Model for Radiological Protection
,”
Annals of the ICRP
Publication 66, Pergamon Press, Oxford.
2.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2003, “
Laminar-to-Turbulent Fluid-Particle Flows in a Human Airway Model
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
271
289
.
3.
Service
,
R. F.
, 2003, “
Nanomaterials Show Signs of Toxicity
,”
Science
0036-8075,
300
, p.
243
.
4.
Oberdörster
,
G.
, and
Utell
,
M. J.
, 2002, “
Ultrafine Particles in the Urban Air: to the Respiratory Tract–and Beyond
?”
Environ. Health Perspect.
0091-6765,
110
(
8
), pp.
A440
A441
.
5.
Illum
,
L.
, 2002, “
Nasal Drug Delivery: New Developments and Strategies
,”
Drug Discovery Today
1359-6446,
7
, pp.
1184
1189
.
6.
Swift
,
D. L.
, and
Proctor
,
D. F.
, 1977, “
Access of Air to the Respiratory Tract
,” in
Respiratory Defense Mechanisms: Part I
,
Dekker
, New York, pp.
63
93
.
7.
Hahn
,
I.
,
Schere
,
P. W.
, and
Mozell
,
M. M.
, 1993, “
Velocity Profiles Measured for Airflow through a Large-scale Model of the Human Nasal Cavity
,”
J. Appl. Physiol.
8750-7587,
75
, pp.
2273
2287
.
8.
Kelly
,
J. T.
,
Prasad
,
A. K.
, and
Wexler
,
A. S.
, 2000, “
Detail Flow Patterns in the Nasal Cavity
,”
J. Appl. Physiol.
8750-7587,
89
, pp.
323
337
.
9.
Kim
,
S. K.
, and
Chung
,
S. K.
, 2004, “
An Investigation on Airflow in Disordered Nasal Cavity and its Corrected Models by Tomographic PIV
,”
Meas. Sci. Technol.
0957-0233,
15
, pp.
1090
1096
.
10.
Churchill
,
S. E.
,
Shackelford
,
L. L.
,
Georgi
,
J. N.
, and
Black
,
M. T.
, 2004, “
Morphological Variation and Airflow Dynamics in the Human Nose
,”
Am. J. Human Biol.
,
16
(
6
), pp.
625
638
.
11.
Cheng
,
K. H.
,
Cheng
,
Y. S.
,
Yeh
,
H. C.
and
Swfit
,
D. L.
, 1995, “
Deposition of Ultrafine Aerosols in the Head Airways During Natural Breathing and During Simulated Breath Holding Using Replicate Human Upper Airway Casts
,”
Aerosol Sci. Technol.
0278-6826,
23
, pp.
465
474
.
12.
Cheng
,
Y. S.
, 2003, “
Aerosol Deposition in the Extrathoracic Region
,”
Aerosol Sci. Technol.
0278-6826,
37
, pp.
659
671
.
13.
Kim
,
C. S.
, and
Jaques
,
P. A.
, 2004, “
Analysis of Total Respiratory Deposition of Inhaled Ultrafine Particles in Adult Subjects at Various Breathing Patterns
,”
Aerosol Sci. Technol.
0278-6826,
38
, pp.
525
540
.
14.
Kelly
,
J. T.
,
Asgharian
,
B.
,
Kimbell
,
J.
, and
Wong
,
B. A.
, 2004, “
Particle Deposition in Human Nasal Airway Replicas Manufactured by Different Methods. Part II: Ultrafine Particles
,”
Aerosol Sci. Technol.
0278-6826,
38
, pp.
1072
1079
.
15.
Keyhani
,
K.
,
Scherer
,
P. W.
, and
Mozell
,
M. M.
, 1995, “
Numerical Simulation of Airflow in the Human Nasal Cavity
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
429
441
.
16.
Subramaniam
,
R. P.
,
Richardson
,
R. B.
,
Morgan
,
K. T.
, and
Kimbell
,
J. S.
, 1998, “
Computational Fluid Dynamics Simulations of Inspiratory Airflow in the Human Nose and Nasopharynx
,”
Inhalation Toxicol.
0895-8378,
10
, pp.
91
120
.
17.
Horchler
,
I.
,
Meinke
,
M.
, and
Schroder
,
W.
, 2003, “
Numerical Simulation of the Flow Field in a Model of the Nasal Cavity
,”
Comput. Fluids
0045-7930,
32
, pp.
39
45
.
18.
Weinhold
,
I.
, and
Mlynski
,
G.
, 2004, “
Numerical Simulation of Airflow in the Human Nose
,”
Eur. Arch. Otorhinolaryngol.
0937-4477,
261
, pp.
452
455
.
19.
Zhao
,
K.
,
Scherer
,
P. W.
,
Hajiloo
,
S. A.
, and
Dalton
,
P.
, 2004, “
Effect of Anatomy on Human Nasal Air Flow and Odorant Transport Patterns: Implications for olfaction
,”
Chem. Senses
0379-864X,
29
(
5
), pp.
365
379
.
20.
Martonen
,
T. B.
,
Zhang
,
Z.
,
Yue
,
G.
and
Musante
,
C. J.
, 2003, “
Fine Particle Deposition within Human Nasal Airways
,”
Inhalation Toxicol.
0895-8378,
15
, pp.
283
303
.
21.
Proctor
,
D. F.
, 1982,
The Mucociliary System
. In
The Nose
,
D. F.
Proctor
and
I.
Andersen
, eds.,
Elsevier
, Amsterdam.
22.
Keyhani
,
K.
,
Scherer
,
P. W.
, and
Mozell
,
M.
, 1997, “
A Numerical Model of Nasal Odorant Transport for the Analysis of Human Olfactory
,”
J. Theor. Biol.
0022-5193,
186
, pp.
279
301
.
23.
Fodil
,
R.
,
Brugel-Ribere
,
L.
,
Croce
,
C.
,
Sbirlea-Apiou
,
G.
,
Larger
,
C.
,
Papon
,
J. F.
,
Delclaux
,
C.
,
Coste
,
A.
,
Isabey
,
D.
, and
Louis
,
B.
, 2005, “
Inspiratory Flow in the Nose: A Model Coupling Flow and Vasoerectile Tissue Distensibility
,”
J. Appl. Physiol.
8750-7587,
98
, pp.
288
295
.
24.
Bridger
,
G. P.
, and
Proctor
,
D. F.
, 1970, “
Maximum Nasal Inspiratory Flow and Nasal Resistance
,”
Ann. Otol. Rhinol. Laryngol.
0003-4894,
79
(
3
), pp.
481
488
.
25.
Finlay
,
W. H.
, 2001,
The Mechanics of Inhaled Pharmaceutical Aerosols
,
Academic
, San Diego, CA.
26.
Clift
,
R.
,
Grace
,
J. R.
and
Weber
,
M. E.
, 1978,
Bubble, Drops and Particles
,
Academic
, New York.
27.
Allen
,
M. D.
, and
Raabe
,
O. G.
, 1985, “
Slip Correction Measurements of Spherical Solid Aerosol-particles in an Improved Millikan Apparatus
,”
Aerosol Sci. Technol.
0278-6826,
4
(
3
), pp.
269
286
.
28.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2003, “
Laminar to Turbulent Fluid-particle Flows in a Human Airway Model
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
217
289
.
29.
Zhang
,
Z.
,
Kleinstreuer
,
C.
,
Donohue
,
J. F.
, and
Kim
,
C. S.
, 2005, “
Comparison of Micro- and Nano-size Particle Depositions in a Human Upper Airway Model
,”
J. Aerosol Sci.
0021-8502,
36
(
2
), pp.
211
233
.
30.
Shi
,
H.
,
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Kim
,
C. S.
, 2004, “
Nano-particle Transport and Deposition in Bifurcating Tubes with Different Inlet Conditions
,”
Phys. Fluids
1070-6631,
16
(
7
), pp.
2199
2213
.
31.
Loudon
,
C.
, and
Tordesillas
,
A.
, 1998, “
The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow
,”
J. Theor. Biol.
0022-5193,
191
, pp.
63
78
.
32.
Pedley
,
T. J.
,
Schroter
,
R. C.
, and
Sudlow
,
M. F.
, 1977, “
Gas Flow and Mixing in the Airway
,” in
Bioengineering Aspects of the Lung
,
J. B.
West
, ed.,
Marcel Dekker
, New York.
33.
Balashazy
,
I.
,
Farkas
,
A.
,
Szoke
,
I.
,
Hofmann
,
W.
, and
Sturm
,
R.
, 2003, “
Simulation of Deposition and Clearance of Inhaled Particles in Central Human Airways
,”
Radiat. Prot. Dosim.
0144-8420,
105
(
1–4
), pp.
129
132
.
34.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2002, “
Micro-Particle Transport and Deposition in a Human Oral Airway Model
,”
J. Aerosol Sci.
0021-8502,
33
(
12
), pp.
1635
1652
.
You do not currently have access to this content.