There are many causes of lengthening of an anterior cruciate ligament soft-tissue graft construct (i.e., graft+fixationdevices+bone), which can lead to an increase in anterior laxity. These causes can be due to plastic deformation and∕or an increase in elastic deformation. The purposes of this in vitro study were (1) to develop the methods to quantify eight causes (four elastic and four plastic) associated with the tibial and femoral fixations using Roentgen stereophotogrammetric analysis (RSA) and to demonstrate the usefulness of these methods, (2) to assess how well an empirical relationship between an increase in length of the graft construct and an increase in anterior laxity predicts two causes (one elastic and one plastic) associated with the graft midsubstance, and (3) to determine the increase in anterior tare laxity (i.e., laxity under the application of a 30N anterior tare force) before the graft force reaches zero. Markers were injected into the tibia, femur, and graft in six cadaveric legs whose knees were reconstructed with single-loop tibialis grafts. To satisfy the first objective, legs were subjected to 1500cycles at 14Hz of 150N anterior force transmitted at the knee. Based on marker 3D coordinates, equations were developed for determining eight causes associated with the fixations. After 1500 load cycles, plastic deformation between the graft and WasherLoc tibial fixation was the greatest cause with an average of 0.8±0.5mm followed by plastic deformation between the graft and cross-pin-type femoral fixation with an average of 0.5±0.1mm. The elastic deformations between the graft and tibial fixation and between the graft and femoral fixation decreased averages of 0.3±0.3mm and 0.2±0.1mm, respectively. The remaining four causes associated with the fixations were close to 0. To satisfy the remaining two objectives, after cyclic loading, the graft was lengthened incrementally while the 30N anterior tare laxity, 150N anterior laxity, and graft tension were measured. The one plastic cause and one elastic cause associated with the graft midsubstance were predicted by the empirical relationships with random errors (i.e., precision) of 0.9mm and 0.5mm, respectively. The minimum increase in 30N anterior tare laxity before the graft force reached zero was 5mm. Hence, each of the eight causes of an increase in the 150N anterior laxity associated with the fixations can be determined with RSA as long as the overall increase in the 30N anterior tare laxity does not exceed 5mm. However, predicting the two causes associated with the graft using empirical relationships is prone to large errors.

1.
Nyland
,
J.
,
Caborn
,
D. N.
,
Rothbauer
,
J.
,
Kocabey
,
Y.
, and
Couch
,
J.
, 2003, “
Two-Year Outcomes Following ACL Reconstruction With Allograft Tibialis Anterior Tendons: A Retrospective Study
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
11
(
4
), pp.
212
218
.
2.
Caborn
,
D. N.
, and
Selby
,
J. B.
, 2002, “
Allograft Anterior Tibialis Tendon With Bioabsorbable Interference Screw Fixation in Anterior Cruciate Ligament Reconstruction
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
18
(
1
), pp.
102
105
.
3.
Chang
,
S. K.
,
Egami
,
D. K.
,
Shaieb
,
M. D.
,
Kan
,
D. M.
, and
Richardson
,
A. B.
, 2003, “
Anterior Cruciate Ligament Reconstruction: Allograft Versus Autograft
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
19
(
5
), pp.
453
462
.
4.
Pearsall
,
A. W.
,
Hollis
,
J. M.
,
Russell
,
G. V.
, Jr.
, and
Scheer
,
Z.
, 2003, “
A Biomechanical Comparison of Three Lower Extremity Tendons for Ligamentous Reconstruction About the Knee
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
19
(
10
), pp.
1091
1096
.
5.
Haut Donahue
,
T. L.
,
Howell
,
S. M.
,
Hull
,
M. L.
, and
Gregersen
,
C.
, 2002, “
A Biomechanical Evaluation of Anterior and Posterior Tibialis Tendons as Suitable Single-Loop Anterior Cruciate Ligament Grafts
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
18
(
6
), pp.
589
597
.
6.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
Lengthening of Double-Looped Tendon Graft Constructs in Three Regions After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Orthop. Res.
0736-0266,
22
(
4
), pp.
839
846
.
7.
Adam
,
F.
,
Pape
,
D.
,
Schiel
,
K.
,
Steimer
,
O.
,
Kohn
,
D.
, and
Rupp
,
S.
, 2004, “
Biomechanical Properties of Patellar and Hamstring Graft Tibial Fixation Techniques in Anterior Cruciate Ligament Reconstruction: Experimental Study With Roentgen Stereometric Analysis
,”
Am. J. Sports Med.
0363-5465,
32
(
1
), pp.
71
78
.
8.
Smith
,
C. K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2006, “
Lengthening of a Single-Loop Tibialis Tendon Graft Construct After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
437
442
.
9.
Khan
,
R.
,
Konyves
,
A.
,
Rama
,
K. R.
,
Thomas
,
R.
, and
Amis
,
A. A.
, 2006, “
RSA Can Measure ACL Graft Stretching and Migration: Development of a New Method
,”
Clin. Orthop. Relat. Res.
0009-921X,
448
, pp.
139
145
.
10.
Cuppone
,
M.
, and
Seedhom
,
B. B.
, 2001, “
Effect of Implant Lengthening and Mode of Fixation on Knee Laxity After ACL Reconstruction With an Artificial Ligament: A Cadaveric Study
,”
J. Orthop. Sci.
0949-2658,
6
(
3
), pp.
253
261
.
11.
Grover
,
D.
,
Thompson
,
D.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2006, “
Empirical Relationship Between Lengthening an Anterior Cruciate Ligament Graft and Increases in Knee Anterior Laxity: A Human Cadaveric Study
,”
J. Biomech. Eng.
0148-0731,
128
(
6
), pp.
969
972
.
12.
Arnold
,
M. P.
,
Lie
,
D. T.
,
Verdonschot
,
N.
,
de Graaf
,
R.
,
Amis
,
A. A.
, and
van Kampen
,
A.
, 2005, “
The Remains of Anterior Cruciate Ligament Graft Tension After Cyclic Knee Motion
,”
Am. J. Sports Med.
0363-5465,
33
(
4
), pp.
536
542
.
13.
Grover
,
D. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2005, “
Early Tension Loss in an Anterior Cruciate Ligament Graft. A Cadaver Study of Four Tibial Fixation Devices
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
87
(
2
), pp.
381
390
.
14.
Fleming
,
B. C.
,
Brattbakk
,
B.
,
Peura
,
G. D.
,
Badger
,
G. J.
, and
Beynnon
,
B. D.
, 2002, “
Measurement of Anterior-Posterior Knee Laxity: A Comparison of Three Techniques
,”
J. Orthop. Res.
0736-0266,
20
(
3
), pp.
421
426
.
15.
Zatsiorsky
,
V. M.
, 2002,
Kinetics of Human Motion
,
Human Kinetics
,
Champaign, IL
, pp.
653
.
16.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Davis
,
B. R.
,
Finerman
,
G. A.
, and
Slauterbeck
,
J. L.
, 1996, “
Biomechanical Consequences of Replacement of the Anterior Cruciate Ligament With a Patellar Ligament Allograft. Part I: Insertion of the Graft and Anterior-Posterior Testing
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
(
11
), pp.
1720
1727
.
17.
Roos
,
P. J.
,
Neu
,
C. P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2005, “
A New Tibial Coordinate System Improves the Precision of Anterior-Posterior Knee Laxity Measurements: A Cadaveric Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Orthop. Res.
0736-0266,
23
(
2
), pp.
327
333
.
18.
Friden
,
T.
,
Ryd
,
L.
, and
Lindstrand
,
A.
, 1992, “
Laxity and Graft Fixation After Reconstruction of the Anterior Cruciate Ligament. A Roentgen Stereophotogrammetric Analysis of 11 Patients
,”
Acta Orthop. Scand.
0001-6470,
63
(
1
), pp.
80
84
.
19.
Bailey
,
S. B.
,
Grover
,
D. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2004, “
Foam-Reinforced Elderly Human Tibia Approximates Young Human Tibia Better Than Porcine Tibia: A Study of the Structural Properties of Three Soft Tissue Fixation Devices
,”
Am. J. Sports Med.
0363-5465,
32
(
3
), pp.
755
764
.
20.
Simmons
,
R.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2003, “
Effect of the Angle of the Femoral and Tibial Tunnels in the Coronal Plane and Incremental Excision of the Posterior Cruciate Ligament on Tension of an Anterior Cruciate Ligament Graft: An in Vitro Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
85-A
,(
6
), pp.
1018
1029
.
21.
Howell
,
S. M.
,
Gittens
,
M. E.
,
Gottlieb
,
J. E.
,
Traina
,
S. M.
, and
Zoellner
,
T. M.
, 2001, “
The Relationship Between the Angle of the Tibial Tunnel in the Coronal Plane and Loss of Flexion and Anterior Lexity After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
29
(
5
), pp.
567
574
.
22.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
How Cyclic Loading Affects the Migration of Radio-Opaque Markers Attached to Tendon Grafts Using a New Method: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)
,”
J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
62
69
.
23.
Smith
,
C. K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2005, “
Migration of Radio-Opaque Markers Injected Into Tendon Grafts: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)
,”
J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
887
890
.
24.
Selvik
,
G.
, 1989, “
Roentgen Stereophotogrammetry. A Method for the Study of the Kinematics of the Skeletal System
,”
Acta Orthop. Scand. Suppl.
0300-8827,
232
, pp.
1
51
.
25.
Daniel
,
D. M.
,
Stone
,
M. L.
,
Sachs
,
R.
, and
Malcom
,
L.
, 1985, “
Instrumented Measurement of Anterior Knee Laxity in Patients With Acute Anterior Cruciate Ligament Disruption
,”
Am. J. Sports Med.
0363-5465,
13
(
6
), pp.
401
407
.
26.
Steiner
,
M. E.
,
Brown
,
C.
,
Zarins
,
B.
,
Brownstein
,
B.
,
Koval
,
P. S.
, and
Stone
,
P.
, 1990, “
Measurement of Anterior-Posterior Displacement of the Knee. A Comparison of the Results With Instrumented Devices and With Clinical Examination
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
72
(
9
), pp.
1307
1315
.
27.
Weiler
,
A.
,
Richter
,
M.
,
Schmidmaier
,
G.
,
Kandziora
,
F.
, and
Sudkamp
,
N. P.
, 2001, “
The Endopearl Device Increases Fixation Strength and Eliminates Construct Slippage of Hamstring Tendon Grafts With Interference Screw Fixation
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
17
(
4
), pp.
353
359
.
28.
Ciccone
,
W. J.
, II
,
Bratton
,
D. R.
,
Weinstein
,
D. M.
, and
Elias
,
J. J.
, 2006, “
Viscoelasticity and Temperature Variations Decrease Tension and Stiffness of Hamstring Tendon Grafts Following Anterior Cruciate Ligament Reconstruction
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
88
(
5
), pp.
1071
1078
.
29.
Jonsson
,
H.
,
Karrholm
,
J.
, and
Elmqvist
,
L. G.
, 1993, “
Laxity After Cruciate Ligament Injury in 94 Knees. The KT-1000 Arthrometer Versus Roentgen Stereophotogrammetry
,”
Acta Orthop. Scand.
0001-6470,
64
(
5
), pp.
567
570
.
30.
Brandsson
,
S.
,
Karlsson
,
J.
,
Sward
,
L.
,
Kartus
,
J.
,
Eriksson
,
B. I.
, and
Karrholm
,
J.
, 2002, “
Kinematics and Laxity of the Knee Joint After Anterior Cruciate Ligament Reconstruction: Pre- and Postoperative Radiostereometric Studies
,”
Am. J. Sports Med.
0363-5465,
30
(
3
), pp.
361
367
.
31.
Friden
,
T.
,
Sommerlath
,
K.
,
Egund
,
N.
,
Gillquist
,
J.
,
Ryd
,
L.
, and
Lindstrand
,
A.
, 1992, “
Instability After Anterior Cruciate Ligament Rupture. Measurements of Sagittal Laxity Compared in 11 Cases
,”
Acta Orthop. Scand.
0001-6470,
63
(
6
), pp.
593
598
.
32.
Jorn
,
L. P.
,
Friden
,
T.
,
Ryd
,
L.
, and
Lindstrand
,
A.
, 1998, “
Simultaneous Measurements of Sagittal Knee Laxity With an External Device and Radiostereometric Analysis
,”
J. Bone Joint Surg. Br.
0301-620X,
80
(
1
), pp.
169
172
.
33.
Fleming
,
B. C.
,
Beynnon
,
B. D.
, and
Johnson
,
R. J.
, 1993, “
The Use of Knee Laxity Testers for the Determination of Anterior-Posterior Stability of the Knee: Pitfalls in Practice.
,” in
The Anterior Cruciate Ligament: Current and Future Concepts
,
D.
Jackson
, ed.,
Raven
,
New York
, pp.
239
250
.
You do not currently have access to this content.