Previous studies have found gender differences in carpal kinematics, and there are discrepancies in the literature on the location of the flexion∕extension and radio-ulnar deviation rotation axes of the wrist. It has been postulated that these differences are due to carpal bone size differences rather than gender and that they may be resolved by normalizing the kinematics by carpal size. The purpose of this study was to determine if differences in radio-capitate kinematics are a function of size or gender. We also sought to determine if a best-fit pivot point (PvP) describes the radio-capitate joint as a ball-and-socket articulation. By using an in vivo markerless bone registration technique applied to computed tomography scans of 26 male and 28 female wrists, we applied scaling derived from capitate length to radio-capitate kinematics, characterized by a best-fit PvP. We determined if radio-capitate kinematics behave as a ball-and-socket articulation by examining the error in the best-fit PvP. Scaling PvP location completely removed gender differences (P=0.3). This verifies that differences in radio-capitate kinematics are due to size and not gender. The radio-capitate joint did not behave as a perfect ball and socket because helical axes representing anatomical motions such as flexion-extension, radio-ulnar deviation, dart throwers, and antidart throwers, were located at distances up to 4.5mm from the PvP. Although the best-fit PvP did not yield a single center of rotation, it was still consistently found within the proximal pole of the capitate, and rms errors of the best-fit PvP calculation were on the order of 2mm. Therefore, the ball-and-socket model of the wrist joint center using the best-fit PvP is appropriate when considering gross motion of the hand with respect to the forearm such as in optical motion capture models. However, the ball-and-socket model of the wrist is an insufficient description of the complex motion of the capitate with respect to the radius. These findings may aid in the design of wrist external fixation and orthotics.

1.
Patterson
,
R. M.
,
Nicodemus
,
C. L.
,
Viegas
,
S. F.
,
Elder
,
K. W.
, and
Rosenblatt
,
J.
, 1998, “
High-Speed, Three-Dimensional Kinematic Analysis of the Normal Wrist
,”
J. Hand Surg. [Am]
0363-5023,
23
(
3
), pp.
446
453
.
2.
Neu
,
C. P.
,
Crisco
,
J. J.
, and
Wolfe
,
S. W.
, 2001, “
In Vivo Kinematic Behavior of the Radio-Capitate Joint During Wrist Flexion-Extension and Radio-Ulnar Deviation
,”
J. Biomech.
0021-9290,
34
(
11
), pp.
1429
1438
.
3.
Wolfe
,
S. W.
,
Neu
,
C.
, and
Crisco
,
J. J.
, 2000, “
In Vivo Scaphoid, Lunate, and Capitate Kinematics in Flexion and in Extension
,”
J. Hand Surg. [Am]
0363-5023,
25
(
5
), pp.
860
869
.
4.
Youm
,
Y.
,
McMurthy
,
R. Y.
,
Flatt
,
A. E.
, and
Gillespie
,
T. E.
, 1978, “
Kinematics of the Wrist. I. An Experimental Study of Radial-Ulnar Deviation and Flexion-Extension
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
60
(
4
), pp.
423
431
.
5.
Kobayashi
,
M.
,
Berger
,
R. A.
,
Nagy
,
L.
,
Linscheid
,
R. L.
,
Uchiyama
,
S.
,
Ritt
,
M.
, and
An
,
K. N.
, 1997, “
Normal Kinematics of Carpal Bones: A Three-Dimensional Analysis of Carpal Bone Motion Relative to the Radius
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
787
793
.
6.
Moritomo
,
H.
,
Murase
,
T.
,
Goto
,
A.
,
Oka
,
K.
,
Sugamoto
,
K.
, and
Yoshikawa
,
H.
, 2004, “
Capitate-Based Kinematics of the Midcarpal Joint During Wrist Radioulnar Deviation: An In Vivo Three-Dimensional Motion Analysis
,”
J. Hand Surg. [Am]
0363-5023,
29
(
4
), pp.
668
675
.
7.
Kaufmann
,
R.
,
Pfaeffle
,
J.
,
Blankenhorn
,
B.
,
Stabile
,
K.
,
Robertson
,
D.
, and
Goitz
,
R.
, 2005, “
Kinematics of the Midcarpal and Radiocarpal Joints in Radioulnar Deviation: An in Vitro Study
,”
J. Hand Surg. [Am]
0363-5023,
30
(
5
), pp.
937
942
.
8.
Kaufmann
,
R. A.
,
Pfaeffle
,
H. J.
,
Blankenhorn
,
B. D.
,
Stabile
,
K.
,
Robertson
,
D.
, and
Goitz
,
R.
, 2006, “
Kinematics of the Midcarpal and Radiocarpal Joint in Flexion and Extension: An In Vitro Study
,”
J. Hand Surg. [Am]
0363-5023,
31
(
7
), pp.
1142
1148
.
9.
McMurtry
,
R. Y.
,
Youm
,
Y.
,
Flatt
,
A. E.
, and
Gillespie
,
T. E.
, 1978, “
Kinematics of the Wrist. II. Clinical Applications
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
60
(
7
), pp.
955
961
.
10.
Savelberg
,
H. H.
,
Otten
,
J. D.
,
Kooloos
,
J. G.
,
Huiskes
,
R.
, and
Kauer
,
J. M.
, 1993, “
Carpal Bone Kinematics and Ligament Lengthening Studied for the Full Range of Joint Movement
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1389
1402
.
11.
Crisco
,
J. J.
,
Coburn
,
J. C.
,
Moore
,
D. C.
, and
Upal
,
M. A.
, 2005, “
Carpal Bone Size and Scaling in Men Versus in Women
,”
J. Hand Surg. [Am]
0363-5023,
30
(
1
), pp.
35
42
.
12.
Wolfe
,
S. W.
,
Crisco
,
J. J.
,
Orr
,
C. M.
, and
Marzke
,
M. W.
, 2006, “
The Dart-Throwing Motion of the Wrist: Is It Unique to Humans?
,”
J. Hand Surg. [Am]
0363-5023,
31
(
9
), pp.
1429
1437
.
13.
Crisco
,
J. J.
,
Coburn
,
J. C.
,
Moore
,
D. C.
,
Akelman
,
E.
,
Weiss
,
A. P.
, and
Wolfe
,
S. W.
, 2005, “
In Vivo Radiocarpal Kinematics and the Dart Thrower’S Motion
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
87
(
12
), pp.
2729
2740
.
14.
Crisco
,
J. J.
,
McGovern
,
R. D.
, and
Wolfe
,
S. W.
, 1999, “
Noninvasive Technique for Measuring In Vivo Three-Dimensional Carpal Bone Kinematics
,”
J. Orthop. Res.
0736-0266,
17
(
1
), pp.
96
100
.
15.
Marai
,
G. E.
,
Laidlaw
,
D. H.
, and
Crisco
,
J. J.
, 2006, “
Super-Resolution Registration Using Tissue-Classified Distance Fields
,”
IEEE Trans. Med. Imaging
0278-0062,
25
(
2
), pp.
1
11
.
16.
Crisco
,
J. J.
, and
McGovern
,
R. D.
, 1998, “
Efficient Calculation of Mass Moments of Inertia for Segmented Homogenous Three-Dimensional Objects
,”
J. Biomech.
0021-9290,
31
, pp.
97
101
.
17.
Coburn
,
J. C.
,
Upal
,
M. A.
, and
Crisco
,
J. J.
, 2007, “
Coordinate Systems for the Carpal Bones of the Wrist
,”
J. Biomech.
0021-9290,
40
(
1
), pp.
203
209
.
18.
Piazza
,
S. J.
,
Eroemia
,
A.
,
Okita
,
N.
, and
Cavanagh
,
P. R.
, 2004, “
Assessment of the Functional Method of Hip Joint Center Location Subject to Reduced Range of Hip Motion
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
349
356
.
19.
Coburn
,
J.
, and
Crisco
,
J. J.
, 2005, “
Interpolating Three-Dimensional Kinematic Data Using Quaternion Splines and Hermite Curves
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
311
317
.
20.
Hicks
,
J. L.
, and
Richards
,
J. G.
, 2005, “
Clinical Applicability of Using Spherical Fitting to Find Hip Joint Centers
,”
Gait and Posture
0966-6362,
22
(
2
), pp.
138
145
.
21.
Brumbaugh
,
R. B.
,
Crowninshield
,
R. D.
,
Blair
,
W. F.
, and
Andrews
,
J. G.
, 1982, “
An In-Vivo Study of Normal Wrist Kinematics
,”
ASME J. Biomech. Eng.
0148-0731,
104
(
3
), pp.
176
181
.
22.
Volz
,
R. G.
,
Lieb
,
M.
, and
Benjamin
,
J.
, 1980, “
Biomechanics of the Wrist
,”
Clin. Orthop. Relat. Res.
0009-921X,
149
, pp.
112
117
.
23.
Werner
,
F. W.
,
Green
,
J. K.
,
Short
,
W. H.
, and
Masaoka
,
S.
, 2004, “
Scaphoid and Lunate Motion During a Wrist Dart Throw Motion
,”
J. Hand Surg. [Am]
0363-5023,
29
(
3
), pp.
418
422
.
24.
Ishikawa
,
J.
,
Cooney
, III,
W. P.
,
Niebur
,
G.
,
An
,
K. N.
,
Minami
,
A.
, and
Kaneda
,
K.
, 1999, “
The Effects of Wrist Distraction on Carpal Kinematics
,”
J. Hand Surg. [Am]
0363-5023,
24
(
1
), pp.
113
120
.
25.
Neu
,
C. P.
,
McGovern
,
R. D.
, and
Crisco
,
J. J.
, 2000, “
Kinematic Accuracy of Three Surface Registration Methods in a Three-Dimensional Wrist Bone Study
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
5
), pp.
528
533
.
26.
Kuo
,
L. C.
,
Su
,
F. C.
,
Chiu
,
H. Y.
, and
Yu
,
C. Y.
, 2002, “
Feasibility of Using a Video-Based Motion Analysis System for Measuring Thumb Kinematics
,”
J. Biomech.
0021-9290,
35
(
11
), pp.
1499
1506
.
27.
Miltner
,
O.
,
Williams
,
S.
,
Schmidt
,
R.
,
Siebert
,
C. H.
,
Rau
,
G.
,
Zilkens
,
K. W.
, and
Disselhorst-Klug
,
C.
, 2003, “
Arm Motion Analysis: A New Method and Its Clinical Application
,”
Z. Orthop. Ihre Grenzgeb
0044-3220,
141
(
2
), pp.
171
176
.
28.
Riener
,
R.
, and
Straube
,
A.
, 1997, “
Inverse Dynamics as a Tool for Motion Analysis: Arm Tracking Movements in Cerebellar Patients
,”
J. Neurosci. Methods
0165-0270,
72
(
1
), pp.
87
96
.
You do not currently have access to this content.