The biomechanical milieu of the coronary arteries is unique in that they experience mechanical deformations of twisting, bending, and stretching due to their tethering to the epicardial surface. Spatial variations in stresses caused by these deformations could account for the heterogeneity of atherosclerotic plaques within the coronary tree. The goal of this work was to utilize previously reported shear moduli to calculate a shear strain parameter for a Fung-type exponential model of the arterial wall and determine if this single constant can account for the observed behavior of arterial segments under torsion. A Fung-type exponential strain-energy function was adapted to include a torsional shear strain term. The material parameter for this term was determined from previously published data describing the relationship between shear modulus and circumferential stress and longitudinal stretch ratio. Values for the shear strain parameter were determined for three geometries representing the mean porcine left anterior descending coronary artery dimensions plus or minus one standard deviation. Finite element simulation of triaxial biomechanical testing was then used to validate the model. The mean value calculated for the shear strain parameter was 0.0759±0.0009 (N=3 geometries). In silico triaxial experiments demonstrated that the shear modulus is directly proportional to the applied pressure at a constant longitudinal stretch ratio and to the stretch ratio at a constant pressure. Shear moduli determined from these simulations showed excellent agreement to shear moduli reported in literature. Previously published models describing the torsional shear behavior of porcine coronary arteries require a total of six independent constants. We have reduced that description into a single parameter in a Fung-type exponential strain-energy model. This model will aid in the estimation of wall stress distributions of vascular segments undergoing torsion, as such information could provide insight into the role of mechanical stimuli in the localization of atherosclerotic plaque formation.

1.
1999,
Robbins Pathologic Basis of Disease
,
R. S.
Cotran
, ed.,
Saunders
,
Philadelphia, PA
.
2.
McGovern
,
P. G.
,
Pankow
,
J. S.
,
Shahar
,
E.
,
Doliszny
,
K. M.
,
Folsom
,
A. R.
,
Blackburn
,
H.
, and
Luepker
,
R. V.
, 1996, “
Recent Trends in Acute Coronary Heart Disease—Mortality, Morbidity, Medical Care, and Risk Factors. The Minnesota Heart Survey Investigators
,”
N. Engl. J. Med.
0028-4793,
334
(
14
), pp.
884
890
.
3.
Friedman
,
M. H.
, 2002, “
Variability of 3D Arterial Geometry and Dynamics, and Its Pathologic Implications
,”
Biorheology
0006-355X,
39
(
3–4
), pp.
513
517
.
4.
VanEpps
,
J. S.
, and
Vorp
,
D. A.
, 2007, “
Mechanopathobiology of Atherogenesis: A Review
,”
J. Surg. Res.
0022-4804,
142
(
1
), pp.
202
217
.
5.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
0009-7330,
66
(
4
), pp.
1045
1066
.
6.
Friedman
,
M. H.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
, 1987, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Artery Branch
,”
Atherosclerosis
0021-9150,
68
(
1–2
), pp.
27
33
.
7.
Friedman
,
M. H.
,
Hutchins
,
G. M.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
, and
Mark
,
F. F.
, 1981, “
Correlation Between Intimal Thickness and Fluid Shear in Human Arteries
,”
Atherosclerosis
0021-9150,
39
(
3
), pp.
425
436
.
8.
Kornet
,
L.
,
Lambregts
,
J.
,
Hoeks
,
A. P.
, and
Reneman
,
R. S.
, 1998, “
Differences in Near-Wall Shear Rate in the Carotid Artery Within Subjects are Associated With Different Intima-Media Thicknesses
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
18
(
12
), pp.
1877
1884
.
9.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
(
3
), pp.
293
302
.
10.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
, 1983, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
0009-7330,
53
(
4
), pp.
502
514
.
11.
Moore
,
J. E.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
, 1994, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
0021-9150,
110
(
2
), pp.
225
240
.
12.
Stein
,
P. D.
,
Hamid
,
M. S.
,
Shivkumar
,
K.
,
Davis
,
T. P.
,
Khaja
,
F.
, and
Henry
,
J. W.
, 1994, “
Effects of Cyclic Flexion of Coronary Arteries on Progression of Atherosclerosis
,”
Am. J. Cardiol.
0002-9149,
73
(
7
), pp.
431
437
.
13.
Thubrikar
,
M. J.
,
Baker
,
J. W.
, and
Nolan
,
S. P.
, 1988, “
Inhibition of Atherosclerosis Associated With Reduction of Arterial Intramural Stress in Rabbits
,”
Arteriosclerosis (Dallas)
0276-5047,
8
(
4
), pp.
410
420
.
14.
Thubrikar
,
M. J.
,
Deck
,
J. D.
,
Aouad
,
J.
, and
Chen
,
J. M.
, 1985, “
Intramural Stress as a Causative Factor in Atherosclerotic Lesions of the Aortic Valve
,”
Atherosclerosis
0021-9150,
55
(
3
), pp.
299
311
.
15.
Thubrikar
,
M. J.
, and
Robicsek
,
F.
, 1995, “
Pressure-Induced Arterial Wall Stress and Atherosclerosis
,”
Ann. Thorac. Surg.
0003-4975,
59
(
6
), pp.
1594
1603
.
16.
Salzar
,
R. S.
,
Thubrikar
,
M. J.
, and
Eppink
,
R. T.
, 1995, “
Pressure-Induced Mechanical Stress in the Carotid Artery Bifurcation: A Possible Correlation to Atherosclerosis
,”
J. Biomech.
0021-9290,
28
(
11
), pp.
1333
1340
.
17.
Aikawa
,
M.
,
Sivam
,
P. N.
,
Kuro’o
,
M.
,
Kimura
,
K.
,
Nakahara
,
K.
,
Takewaki
,
S.
,
Ueda
,
M.
,
Yamaguchi
,
H.
,
Yazaki
,
Y.
, and
Periasamy
,
M.
, 1993, “
Human Smooth Muscle Myosin Heavy Chain Isoforms as Molecular Markers for Vascular Development and Atherosclerosis
,”
Circ. Res.
0009-7330,
73
(
6
), pp.
1000
1012
.
18.
Ding
,
Z.
, and
Friedman
,
M. H.
, 2000, “
Dynamics of Human Coronary Arterial Motion and Its Potential Role in Coronary Atherogenesis
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
5
), pp.
488
492
.
19.
Ding
,
Z.
,
Zhu
,
H.
, and
Friedman
,
M. H.
, 2002, “
Coronary Artery Dynamics In Vivo
,”
Ann. Biomed. Eng.
0090-6964,
30
(
4
), pp.
419
429
.
20.
Gross
,
M. F.
, and
Friedman
,
M. H.
, 1998, “
Dynamics of Coronary Artery Curvature Obtained From Biplane Cineangiograms
,”
J. Biomech.
0021-9290,
31
(
5
), pp.
479
484
.
21.
Hamid
,
M. S.
,
Davis
,
T. P.
, and
Stein
,
P. D.
, 1992, “
Cyclic Flexion of the Coronary Arteries is a Possible Contributing Factor to Coronary Atherosclerosis
,”
Adv. Bioeng.
0360-9960,
22
, pp.
329
331
.
22.
Pao
,
Y. C.
,
Lu
,
J. T.
, and
Ritman
,
E. L.
, 1992, “
Bending and Twisting of an In Vivo Coronary Artery at a Bifurcation
,”
J. Biomech.
0021-9290,
25
(
3
), pp.
287
295
.
23.
Lehoux
,
S.
, and
Tedgui
,
A.
, 2003, “
Cellular Mechanics and Gene Expression in Blood Vessels
,”
J. Biomech.
0021-9290,
36
(
5
), pp.
631
643
.
24.
Lu
,
X.
,
Yang
,
J.
,
Zhao
,
J. B.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2003, “
Shear Modulus of Porcine Coronary Artery: Contributions of Media and Adventitia
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
285
(
5
), pp.
H1966
H1975
.
25.
Deng
,
S. X.
,
Tomioka
,
J.
,
Debes
,
J. C.
, and
Fung
,
Y. C.
, 1994, “
New Experiments on Shear Modulus of Elasticity of Arteries
,”
Am. J. Physiol.
0002-9513,
266
(
1 Pt 2
), pp.
H1
H10
.
26.
1983, “
What Principle Governs the Stress Distribution in Living Organisms
,”
Biomechanics in China, Japan, and USA
,
Y. C.
Fung
,
E.
Fakada
, and
J.
Wang
, eds.,
Science
,
Beijing
, pp.
1
13
.
27.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
, 1983, “
Estimation of Residual Strains in Aortic Segments
,”
Biomechanical Engineering II, Recent Developments
,
C. W.
Hall
, ed.,
Pergamon
,
New York
, pp.
330
333
.
28.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics Cells, Tissues, and Organs
,
Springer
,
New York
.
29.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1983, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
105
(
3
), pp.
268
274
.
30.
Wang
,
C.
,
Garcia
,
M.
,
Lu
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2006, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
291
(
3
), pp.
H1200
H1209
.
31.
Frobert
,
O.
,
Gregersen
,
H.
,
Bjerre
,
J.
,
Bagger
,
J. P.
, and
Kassab
,
G. S.
, 1998, “
Relation Between Zero-Stress State and Branching Order of Porcine Left Coronary Arterial Tree
,”
Am. J. Physiol.
0002-9513,
275
(6 Pt 2), pp.
H2283
H2290
.
32.
Guo
,
X.
, and
Kassab
,
G. S.
, 2004, “
Distribution of Stress and Strain Along the Porcine Aorta and Coronary Arterial Tree
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
(
6
), pp.
H2361
H2368
.
33.
Zhang
,
W.
,
Herrera
,
C.
,
Atluri
,
S. N.
, and
Kassab
,
G. S.
, 2004, “
Effect of Surrounding Tissue on Vessel Fluid and Solid Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
760
769
.
You do not currently have access to this content.