The development of more effective fixation devices for reapproximating and immobilizing the sternum after open-heart surgery is limited by current methods for evaluating these devices. In particular, precise emulation of in vivo sternal loading has not been achieved in controlled model systems. The present study is an initial effort to determine the in vivo loading parameters needed to improve current in vitro and in silico (computational) models. Towards this goal, the direction, magnitude, and distribution of loading along a midline sternotomy were characterized in a porcine model. Two instrumented plating systems were used to measure the forces across the bisected sternum in four anaesthetized Yorkshire pigs during spontaneous breathing, ventilated breathing, and coughing for four treatments: live, cadaveric, embalmed, and refrigerated. Changes in forces incurred by death and embalming were also investigated to evaluate the potential applicability of cadavers as models for testing sternal fixation devices. The magnitudes of the respiratory forces in three orthogonal directions ranged from 0.4Nto43.8N, many fold smaller than previously estimated. Dynamic forces were highest in the lateral direction during coughing and low in all directions during normal breathing. No significant differences in force were found between the four treatments, most likely due to the unexpectedly low magnitude of forces in all groups. These results provide the first measurements of in vivo sternal forces and indicate that small cyclic fatigue loads rather than large quasistatic loads should be applied in future model systems to best evaluate the mechanical performance of fixation devices.

1.
Stahle
,
E.
,
Tammelin
,
A.
,
Bergstrom
,
R.
,
Hambreus
,
A.
,
Nystrom
,
S. O.
, and
Hansson
,
H. E.
, 1997, “
Sternal Wound Complications-Incidence, Microbiology and Risk Factors
,”
Eur. J. Cardiothorac Surg.
1010-7940,
11
(
6
), pp.
1146
1153
.
2.
American Heart Association Statistics Committee and Stroke Statistics Subcommittee, 2007, “
Heart Disease and Stroke Statistics—2007 Update
,”
Circulation
0009-7322,
115
(
5
), pp.
69
171
.
3.
El Oakley
,
R. M.
, and
Wright
,
J. E.
, 1996, “
Postoperative Mediastinitis: Classification and Management
,”
Ann. Thorac. Surg.
0003-4975,
61
(
3
), pp.
1030
1036
.
4.
Gottlieb
,
L. J.
,
Pielet
,
R. W.
,
Karp
,
R. B.
,
Krieger
,
L. M.
,
Smith
,
D. J.
, Jr.
, and
Deeb
,
G. M.
, 1994, “
Rigid Internal Fixation of the Sternum in Postoperative Mediastinitis
,”
Arch. Surg. (Chicago)
0004-0010,
129
(
5
), pp.
489
493
.
5.
Ozaki
,
W.
,
Buchman
,
S. R.
,
Iannettoni
,
M. D.
, and
Frankenburg
,
E. P.
, 1998, “
Biomechanical Study of Sternal Closure Using Rigid Fixation Techniques in Human Cadavers
,”
Ann. Thorac. Surg.
0003-4975,
65
(
6
), pp.
1660
1665
.
6.
Tavilla
,
G.
,
van Son
,
J. A.
,
Verhagen
,
A. F.
, and
Lacquet
,
L. K.
, 1991, “
Modified Robicsek Technique for Complicated Sternal Closure
,”
Ann. Thorac. Surg.
0003-4975,
52
(
5
), pp.
1179
1180
.
7.
Centofanti
,
P.
,
La Torre
,
M.
,
Barbato
,
L.
,
Verzini
,
A.
,
Patane
,
F.
, and
di Summa
,
M.
, 2002, “
Sternal Closure Using Semirigid Fixation With Thermoreactive Clips
,”
Ann. Thorac. Surg.
0003-4975,
74
(
3
), pp.
943
945
.
8.
McGregor
,
W. E.
,
Trumble
,
D. R.
, and
Magovern
,
J. A.
, 1999, “
Mechanical Analysis of Midline Sternotomy Wound Closure
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
117
(
6
), pp.
1144
1150
.
9.
McGregor
,
W. E.
,
Payne
,
M.
,
Trumble
,
D. R.
,
Farkas
,
K. M.
, and
Magovern
,
J. A.
, 2003, “
Improvement of Sternal Closure Stability With Reinforced Steel Wires
,”
Ann. Thorac. Surg.
0003-4975,
76
(
5
), pp.
1631
1634
.
10.
Losanoff
,
J. E.
,
Collier
,
A. D.
,
Wagner-Mann
,
C. C.
,
Richman
,
B. W.
,
Huff
,
H.
,
Hsieh
,
F.
,
Diaz-Arias
,
A.
, and
Jones
,
J. W.
, 2004, “
Biomechanical Comparison of Median Sternotomy Closures
,”
Ann. Thorac. Surg.
0003-4975,
77
(
1
), pp.
203
209
.
11.
Casha
,
A. R.
,
Yang
,
L.
,
Kay
,
P. H.
,
Saleh
,
M.
, and
Cooper
,
G. J.
, 1999, “
A Biomechanical Study of Median Sternotomy Closure Techniques
,”
Eur. J. Cardiothorac Surg.
1010-7940,
15
(
3
), pp.
365
369
.
12.
Pai
,
S.
,
Gunja
,
N. J.
,
Dupak
,
E. L.
,
McMahon
,
N. L.
,
Lalikos
,
J.
,
Dunn
,
R. M.
,
Roth
,
T.
,
Francalancia
,
N.
,
Pins
,
G. D.
, and
Billiar
,
K. L.
, 2005, “
In Vitro Comparison of Wire and Plate Fixation for Midline Sternotomies
,”
Ann. Thorac. Surg.
0003-4975,
80
(
3
), pp.
962
968
.
13.
Dasika
,
U. K.
,
Trumble
,
D. R.
, and
Magovern
,
J. A.
, 2003, “
Lower Sternal Reinforcement Improves the Stability of Sternal Closure
,”
Ann. Thorac. Surg.
0003-4975,
75
(
5
), pp.
1618
1621
.
14.
Trumble
,
D. R.
,
McGregor
,
W. E.
, and
Magovern
,
J. A.
, 2002, “
Validation of a Bone Analog Model for Studies of Sternal Closure
,”
Ann. Thorac. Surg.
0003-4975,
74
(
3
), pp.
739
744
.
15.
Chakkalakal
,
D. A.
,
Strates
,
B. S.
,
Mashoof
,
A. A.
,
Garvin
,
K. L.
,
Novak
,
J. R.
,
Fritz
,
E. D.
,
Mollner
,
T. J.
, and
McGuire
,
M. H.
, 1999, “
Repair of Segmental Bone Defects in the Rat: An Experimental Model of Human Fracture Healing
,”
Bone
8756-3282,
25
(
3
), pp.
321
332
.
16.
Yamaji
,
T.
,
Ando
,
K.
,
Wolf
,
S.
,
Augat
,
P.
, and
Claes
,
L.
, 2001, “
The Effect of Micromovement on Callus Formation
,”
J. Orthop. Res.
0736-0266,
6
, pp.
571
575
.
17.
Claes
,
L.
,
Eckert-Hubner
,
K.
, and
Augat
,
P.
, 2002, “
The Effect of Mechanical Stability on Local Vascularization and Tissue Differentiation in Callus Healing
,”
J. Orthop. Res.
0736-0266,
20
(
5
), pp.
1099
1105
.
18.
Martin
,
D. C.
,
Medri
,
M. K.
,
Chow
,
R. S.
,
Oxorn
,
V.
,
Leekam
,
R. N.
,
Agur
,
A. M.
, and
McKee
,
N. H.
, 2001, “
Comparing Human Skeletal Muscle Architectural Parametersof Cadavers With In Vivo Ultrasonographic Measurements
,”
J. Anat.
0021-8782,
199
(Pt 4), pp.
429
434
.
19.
Pai
,
S.
,
Gunja
,
N. J.
,
Dupak
,
E. L.
,
McMahon
,
N. L.
,
Lalikos
,
J.
,
Dunn
,
R. M.
,
Francalancia
,
N.
,
Pins
,
G. D.
, and
Billiar
,
K. L.
, 2007, “
A Mechanical Study of Rigid Plate Configurations for Sternal Fixation
,”
Ann. Biomed. Eng.
0090-6964,
35
(
5
), pp.
808
816
.
20.
Trumble
,
D. R.
, and
Magovern
,
J. A.
, 2004, “
Comparison of Dog and Pig Models for Testing Substernal Cardiac Compression Devices
,”
ASAIO J.
1058-2916,
50
(
3
), pp.
188
192
.
21.
Losanoff
,
J. E.
,
Foerst
,
J. R.
,
Huff
,
H.
,
Richman
,
B. W.
,
Collier
,
A. D.
,
Hsieh
,
F. H.
,
Lee
,
S.
, and
Jones
,
J. W.
, 2002, “
Biomechanical Porcine Model of Median Sternotomy Closure
,”
J. Surg. Res.
0022-4804,
107
(
1
), pp.
108
112
.
22.
Julian
,
O. C.
,
Lopez-Belio
,
M.
,
Dye
,
W. S.
,
Javid
,
H.
, and
Grove
,
W. J.
, 1957, “
The Median Sternal Incision in Intracardiac Surgery With Extracorporeal Circulation; A General Evaluation of Its Use in Heart Surgery
,”
Surgery (St. Louis)
0039-6060,
42
(
4
), pp.
753
761
.
23.
De Troyer
,
A.
, and
Kelly
,
S.
, 1982, “
Chest Wall Mechanics in Dogs With Acute Diaphragm Paralysis
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
53
(
2
), pp.
373
379
.
24.
Cohen
,
D. J.
, and
Griffin
,
L. V.
, 2002, “
A Biomechanical Comparison of Three Sternotomy Closure Techniques
,”
Ann. Thorac. Surg.
0003-4975,
73
(
2
), pp.
563
568
.
25.
Augat
,
P.
,
Burger
,
J.
,
Schorlemmer
,
S.
,
Henke
,
T.
,
Peraus
,
M.
, and
Claes
,
L.
, 2003, “
Shear Movement at the Fracture Site Delays Healing in a Diaphyseal Fracture Model
,”
J. Orthop. Res.
0736-0266,
21
(
6
), pp.
1011
1017
.
26.
Saito
,
T.
,
Iguchi
,
A.
,
Sakurai
,
M.
, and
Tabayashi
,
K.
, 2004, “
Biomechanical Study of a Poly-L-Lactide (PLLA) Sternal Pin in Sternal Closure After Cardiothoracic Surgery
,”
Ann. Thorac. Surg.
0003-4975,
77
(
2
), pp.
684
687
.
27.
Van Ee
,
C. A.
,
Chasse
,
A. L.
, and
Myers
,
B. S.
, 2000, “
Quantifying Skeletal Muscle Properties in Cadaveric Test Specimens: Effects of Mechanical Loading, Postmortem Time, and Freezer Storage
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
9
14
.
28.
Casha
,
A. R.
,
Yang
,
L.
, and
Cooper
,
G. J.
, 1999, “
Measurement of Chest Wall Forces on Coughing With the Use of Human Cadavers
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
118
(
6
), pp.
1157
1158
.
29.
Huelke
,
D. F.
,
Nusholtz
,
G. S.
, and
Kaiker
,
P. S.
, 1986, “
Use of Quadruped Models in Thoraco-Abdominal Biomechanics Research
,”
J. Biomech.
0021-9290,
19
(
12
), pp.
969
977
.
You do not currently have access to this content.