Finite element (FE) modeling and multibody dynamics have traditionally been applied separately to the domains of tissue mechanics and musculoskeletal movements, respectively. Simultaneous simulation of both domains is needed when interactions between tissue and movement are of interest, but this has remained largely impractical due to the high computational cost. Here we present a method for the concurrent simulation of tissue and movement, in which state of the art methods are used in each domain, and communication occurs via a surrogate modeling system based on locally weighted regression. The surrogate model only performs FE simulations when regression from previous results is not within a user-specified tolerance. For proof of concept and to illustrate feasibility, the methods were demonstrated on an optimization of jumping movement using a planar musculoskeletal model coupled to a FE model of the foot. To test the relative accuracy of the surrogate model outputs against those of the FE model, a single forward dynamics simulation was performed with FE calls at every integration step and compared with a corresponding simulation with the surrogate model included. Neural excitations obtained from the jump height optimization were used for this purpose and root mean square (RMS) difference between surrogate and FE model outputs (ankle force and moment, peak contact pressure and peak von Mises stress) were calculated. Optimization of the jump height required 1800 iterations of the movement simulation, each requiring thousands of time steps. The surrogate modeling system only used the FE model in 5% of time steps, i.e., a 95% reduction in computation time. Errors introduced by the surrogate model were less than 1mm in jump height and RMS errors of less than 2N in ground reaction force, 0.25Nm in ankle moment, and 10kPa in peak tissue stress. Adaptive surrogate modeling based on local regression allows efficient concurrent simulations of tissue mechanics and musculoskeletal movement.

1.
Huiskes
,
R.
, and
Chao
,
E. Y.
, 1983, “
A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade
,”
J. Biomech.
0021-9290,
16
(
6
), pp.
385
409
.
2.
Gilbertson
,
L. G.
,
Goel
,
V. K.
,
Kong
,
W. Z.
, and
Clausen
,
J. D.
, 1995, “
Finite Element Methods in Spine Biomechanics Research
,”
Crit. Rev. Biomed. Eng.
0278-940X,
23
(
5–6
), pp.
411
473
.
3.
Pandy
,
M. G.
, 2001, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
245
273
.
4.
Anderson
,
D. D.
,
Goldsworthy
,
J. K.
,
Li
,
W.
,
Rudert
,
M. J.
,
Tochigi
,
Y.
, and
Brown
,
T. D.
, 2007, “
Physical Validation of a Patient-Specific Contact Finite Element Model of the Ankle
,”
J. Biomech.
0021-9290,
40
(
8
), pp.
1662
1669
.
5.
Speirs
,
A. D.
,
Heller
,
M. O.
,
Duda
,
G. N.
, and
Taylor
,
W. R.
, 2007, “
Physiologically Based Boundary Conditions in Finite Element Modelling
,”
J. Biomech.
0021-9290,
40
(
10
), pp.
2318
2323
.
6.
Ellis
,
B. J.
,
Debski
,
R. E.
,
Moore
,
S. M.
,
McMahon
,
P. J.
, and
Weiss
,
J. A.
, 2007, “
Methodology and Sensitivity Studies for Finite Element Modeling of the Inferior Glenohumeral Ligament Complex
,”
J. Biomech.
0021-9290,
40
(
3
), pp.
603
612
.
7.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2003, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
0736-0266,
21
(
6
), pp.
1098
1106
.
8.
Phatak
,
N. S.
,
Sun
,
Q.
,
Kim
,
S.
,
Parker
,
D. L.
,
Sanders
,
R. K.
,
Veress
,
A. I.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Noninvasive Determination of Ligament Strain With Deformable Image Registration
,”
Ann. Biomed. Eng.
0090-6964,
35
(
7
), pp.
1175
1187
.
9.
Weiss
,
J. A.
,
Gardiner
,
J. C.
,
Ellis
,
B. J.
,
Lujan
,
T. J.
, and
Phatak
,
N. S.
, 2005, “
Three-Dimensional Finite Element Modeling of Ligaments: Technical Aspects
,”
Med. Eng. Phys.
1350-4533,
27
, pp.
845
861
.
10.
Yao
,
J.
,
Salo
,
A. D.
,
Lee
,
J.
, and
Lerner
,
A.
, 2008, “
Sensitivity of Tibio-Menisco-Femoral Joint Contact Behavior to Variations in Knee Kinematics
,”
J. Biomech.
0021-9290,
41
(
2
), pp.
390
398
.
11.
Bourel
,
B.
,
Combescure
,
A.
, and
Valentin
,
L. D.
, 2006, “
Handling Contact in Multi-Domain Simulation of Automobile Crashes
,”
Finite Elem. Anal. Design
0168-874X,
42
(
8
), pp.
766
779
.
12.
Gravouil
,
A.
, and
Combescure
,
A.
, 2003, “
Multi-Time-Step and Two-Scale Domain Decomposition Method for Non-Linear Structural Dynamics
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
(
10
), pp.
1545
1569
.
13.
Kunzelman
,
K. S.
,
Einstein
,
D. R.
, and
Cochran
,
R. P.
, 2007, “
Fluid-Structure Interaction Models of the Mitral Valve: Function in Normal and Pathological States
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
362
(
1484
), pp.
1393
1406
.
14.
Nicosia
,
M. A.
,
Cochran
,
R. P.
,
Einstein
,
D. R.
,
Rutland
,
C. J.
, and
Kunzelman
,
K. S.
, 2003, “
A Coupled Fluid-Structure Finite Element Model of the Aortic Valve and Root
,”
J. Heart Valve Dis.
0966-8519,
12
(
6
), pp.
781
789
.
15.
Rassaian
,
M.
, and
Lee
,
J.
, 2004, “
Generalized Multi-Domain Method for Fatigue Analysis of Interconnect Structures
,”
Finite Elem. Anal. Design
0168-874X,
40
(
7
), pp.
793
805
.
16.
Besier
,
T. F.
,
Gold
,
G. E.
,
Beaupre
,
G. S.
, and
Delp
,
S. L.
, 2005, “
A Modeling Framework to Estimate Patellofemoral Joint Cartilage Stress In Vivo
,”
Med. Sci. Sports Exercise
0195-9131,
37
, pp.
1924
1930
.
17.
Koolstra
,
J. H.
, and
van Eijden
,
T. M. G. J.
, 2005, “
Combined Finite-Element and Rigid-Body Analysis of Human Jaw Joint Dynamics
,”
J. Biomech.
0021-9290,
38
(
12
), pp.
2431
2439
.
18.
Bei
,
Y.
, and
Fregly
,
B. J.
, 2004, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
1350-4533,
26
(
9
), pp.
777
789
.
19.
McLean
,
S. G.
,
Huang
,
X.
,
Su
,
A.
, and
van den Bogert
,
A. J.
, 2004, “
Sagittal Plane Biomechanics Cannot Injure the ACL During Sidestep Cutting
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
8
), pp.
828
838
.
20.
Lin
,
Y.
,
Farr
,
J.
,
Carter
,
K.
, and
Fregly
,
B. J.
, 2006, “
Response Surface Optimization for Joint Contact Model Evaluation
,”
J. Appl. Biomech.
1065-8483,
22
(
2
),
120
130
.
21.
Atkeson
,
C. G.
,
Moore
,
A. W.
, and
Schaal
,
S.
, 1997, “
Locally Weighted Learning for Control
,”
Artif. Intell. Rev.
0269-2821,
11
(
1–5
), pp.
75
113
.
22.
Gerritsen
,
K. G.
,
van den Bogert
,
A. J.
,
Hulliger
,
M.
, and
Zernicke
,
R. F.
, 1998, “
Intrinsic Muscle Properties Facilitate Locomotor Control—A Computer Simulation Study
,”
Motor Control
1087-1640,
2
(
3
), pp.
206
220
.
23.
Hardin
,
E. C.
,
Su
,
A.
, and
van den Bogert
,
A. J.
, 2004, “
Foot and Ankle Forces During an Automobile Collision: The Influence of Muscles
,”
J. Biomech.
0021-9290,
37
(
5
),
637
44
.
24.
McLean
,
S. G.
,
Su
,
A.
, and
van den Bogert
,
A. J.
, 2003, “
Development and Validation of a 3-D Model to Predict Knee Joint Loading During Dynamic Movement
,”
J. Biomech. Eng.
0148-0731,
125
(
6
), pp.
864
874
.
25.
Erdemir
,
A.
,
Viveiros
,
M. L.
,
Ulbrecht
,
J. S.
, and
Cavanagh
,
P. R.
, 2006, “
An Inverse Finite-Element Model of Heel-Pad Indentation
,”
J. Biomech.
0021-9290,
39
(
7
),
1279
1286
.
26.
Birattari
,
M.
,
Bontempi
,
G.
, and
Bersini
,
H.
, 1999, “
Lazy Learning Meets the Recursive Least Squares Algorithm, Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II
,”
MIT
,
Cambridge, MA
, pp.
375
381
.
27.
Pandy
,
M. G.
,
Zajac
,
F. E.
,
Sim
,
E.
, and
Levine
,
W. S.
, 1990, “
An Optimal Control Model For Maximum-Height Human Jumping
,”
J. Biomech.
0021-9290,
23
(
12
),
1185
1198
.
28.
van Soest
,
A. J.
,
Schwab
,
A. L.
,
Bobbert
,
M. F.
, and
van Ingen Schenau
,
G. J.
, 1993, “
The Influence of the Biarticularity of the Gastrocnemius Muscle on Vertical-Jumping Achievement
,”
J. Biomech.
0021-9290,
26
,
1
8
.
29.
Bobbert
,
M. F.
,
Houdijk
,
J. H. P.
,
de Koning
,
J. J.
, and
de Groot
,
G.
, 2002, “
From a One-Legged Vertical Jump to the Speed-Skating Push-Off: A Stimulation Study
,”
J. Appl. Biomech.
1065-8483,
18
, pp.
28
45
.
30.
Andoni
,
A.
, and
Indyk
,
P.
, 2008, “
Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions
,”
Commun. ACM
0001-0782,
51
(
1
), pp.
117
122
.
31.
Pandy
,
M. G.
, and
Zajac
,
F. E.
, 1991, “
Optimal Muscular Coordination Strategies for Jumping
,”
J. Biomech.
0021-9290,
24
(
1
), pp.
1
10
.
32.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 1999, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
2
(
3
), pp.
201
231
.
33.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2001, “
Dynamic Optimization of Human Walking
,”
J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
381
90
.
34.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
van den Bogert
,
A. J.
, 2000, “
A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
3
(
4
), pp.
321
334
.
You do not currently have access to this content.