The posterior sclera likely plays an important role in the development of glaucoma, and accurate characterization of its mechanical properties is needed to understand its impact on the more delicate optic nerve head—the primary site of damage in the disease. The posterior scleral shells from both eyes of one rhesus monkey were individually mounted on a custom-built pressurization apparatus. Intraocular pressure was incrementally increased from 5mmHg to 45mmHg, and the 3D displacements were measured using electronic speckle pattern interferometry. Finite element meshes of each posterior scleral shell were reconstructed from data generated by a 3D digitizer arm (shape) and a 20 MHz ultrasound transducer (thickness). An anisotropic hyperelastic constitutive model described in a companion paper (Girard, Downs, Burgoyne, and Suh, 2009, “Peripapillary and Posterior Scleral Mechanics—Part I: Development of an Anisotropic Hyperelastic Constitutive Model,” ASME J. Biomech. Eng., 131, p. 051011), which includes stretch-induced stiffening and multidirectional alignment of the collagen fibers, was applied to each reconstructed mesh. Surface node displacements of each model were fitted to the experimental displacements using an inverse finite element method, which estimated a unique set of 13 model parameters. The predictions of the proposed constitutive model matched the 3D experimental displacements well. In both eyes, the tangent modulus increased dramatically with IOP, which indicates that the sclera is mechanically nonlinear. The sclera adjacent to the optic nerve head, known as the peripapillary sclera, was thickest and exhibited the lowest tangent modulus, which might have contributed to the uniform distribution of the structural stiffness for each entire scleral shell. Posterior scleral deformation following acute IOP elevations appears to be nonlinear and governed by the underlying scleral collagen microstructure as predicted by finite element modeling. The method is currently being used to characterize posterior scleral mechanics in normal (young and old), early, and moderately glaucomatous monkey eyes.

1.
Girard
,
M. J. A.
,
Downs
,
J. C.
,
Burgoyne
,
C. F.
, and
Suh
,
J. -K. F.
, 2009, “
Peripapillary and Posterior Scleral Mechanics—Part I: Development of an Anisotropic Hyperelastic Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
051011
.
2.
Woo
,
S. L.
,
Kobayashi
,
A. S.
,
Schlegel
,
W. A.
, and
Lawrence
,
C.
, 1972, “
Nonlinear Material Properties of Intact Cornea and Sclera
,”
Exp. Eye Res.
0014-4835,
14
(
1
), pp.
29
39
.
3.
Pierscionek
,
B. K.
,
Asejczyk-Widlicka
,
M.
, and
Schachar
,
R. A.
, 2007, “
The Effect of Changing Intraocular Pressure on the Corneal and Scleral Curvatures in the Fresh Porcine Eye
,”
Br. J. Ophthalmol.
,
91
(
6
), pp.
801
803
. 0007-1161
4.
Smolek
,
M.
, 1988, “
Elasticity of the Bovine Sclera Measured With Real-Time Holographic Interferometry
,”
Am. J. Optom. Physiol. Opt.
0093-7002,
65
(
8
), pp.
653
660
.
5.
Greene
,
P. R.
, and
McMahon
,
T. A.
, 1979, “
Scleral Creep vs. Temperature and Pressure In Vitro
,”
Exp. Eye Res.
0014-4835,
29
(
5
), pp.
527
537
.
6.
Curtin
,
B. J.
, 1969, “
Physiopathologic Aspects of Scleral Stress-Strain
,”
Trans. Am. Ophthalmol. Soc.
0065-9533,
67
, pp.
417
461
.
7.
Friberg
,
T. R.
, and
Lace
,
J. W.
, 1988, “
A Comparison of the Elastic Properties of Human Choroid and Sclera
,”
Exp. Eye Res.
0014-4835,
47
(
3
), pp.
429
436
.
8.
Siegwart
,
J. T.
, Jr.
, and
Norton
,
T. T.
, 1999, “
Regulation of the Mechanical Properties of Tree Shrew Sclera by the Visual Environment
,”
Vision Res.
0042-6989,
39
(
2
), pp.
387
407
.
9.
Downs
,
J. C.
,
Suh
,
J. K.
,
Thomas
,
K. A.
,
Bellezza
,
A. J.
,
Burgoyne
,
C. F.
, and
Hart
,
R. T.
, 2003, “
Viscoelastic Characterization of Peripapillary Sclera: Material Properties by Quadrant in Rabbit and Monkey Eyes
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
124
131
.
10.
Downs
,
J. C.
,
Suh
,
J. K.
,
Thomas
,
K. A.
,
Bellezza
,
A. J.
,
Hart
,
R. T.
, and
Burgoyne
,
C. F.
, 2005, “
Viscoelastic Material Properties of the Peripapillary Sclera in Normal and Early-Glaucoma Monkey Eyes
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
46
(
2
), pp.
540
546
.
11.
Spoerl
,
E.
,
Boehm
,
A. G.
, and
Pillunat
,
L. E.
, 2005, “
The Influence of Various Substances on the Biomechanical Behavior of Lamina Cribrosa and Peripapillary Sclera
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
46
(
4
), pp.
1286
1290
.
12.
Girard
,
M.
,
Suh
,
J. K.
,
Hart
,
R. T.
,
Burgoyne
,
C. F.
, and
Downs
,
J. C.
, 2007, “
Effects of Storage Time on the Mechanical Properties of Rabbit Peripapillary Sclera After Enucleation
,”
Curr. Eye Res.
0271-3683,
32
(
5
), pp.
465
470
.
13.
Phillips
,
J. R.
, and
McBrien
,
N. A.
, 1995, “
Form Deprivation Myopia: Elastic Properties of Sclera
,”
Ophthalmic Physiol. Opt.
0275-5408,
15
(
5
), pp.
357
362
.
14.
Wollensak
,
G.
, and
Spoerl
,
E.
, 2004, “
Collagen Crosslinking of Human and Porcine Sclera
,”
J. Cataract Refractive Surg.
0886-3350,
30
(
3
), pp.
689
695
.
15.
Schultz
,
D. S.
,
Lotz
,
J. C.
,
Lee
,
S. M.
,
Trinidad
,
M. L.
, and
Stewart
,
J. M.
, 2008, “
Structural Factors that Mediate Scleral Stiffness
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
49
, pp.
4232
4236
.
16.
Weiyi
,
C.
,
Wang
,
X.
,
Wang
,
C.
,
Tao
,
L.
,
Li
,
X.
, and
Zhang
,
Q.
, 2008, “
An Experimental Study on Collagen Content and Biomechanical Properties of Sclera After Posterior Sclera Reinforcement
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
23
, pp.
S17
S20
.
17.
Gloster
,
J.
,
Perkins
,
E. S.
, and
Pommier
,
M. L.
, 1957, “
Extensibility of Strips of Sclera and Cornea
,”
Br. J. Ophthalmol.
,
41
(
2
), pp.
103
110
. 0007-1161
18.
Quigley
,
H.
, and
Anderson
,
D. R.
, 1976, “
The Dynamics and Location of Axonal Transport Blockade by Acute Intraocular Pressure Elevation in Primate Optic Nerve
,”
Invest. Ophthalmol.
0020-9988,
15
(
8
), pp.
606
616
.
19.
Quigley
,
H. A.
, and
Addicks
,
E. M.
, 1980, “
Chronic Experimental Glaucoma in Primates. II. Effect of Extended Intraocular Pressure Elevation on Optic Nerve Head and Axonal Transport
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
19
(
2
), pp.
137
152
.
20.
Erne
,
O. K.
,
Reid
,
J. B.
,
Ehmke
,
L. W.
,
Sommers
,
M. B.
,
Madey
,
S. M.
, and
Bottlang
,
M.
, 2005, “
Depth-Dependent Strain of Patellofemoral Articular Cartilage in Unconfined Compression
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
667
672
.
21.
Kessler
,
O.
,
Lacatusu
,
E.
,
Sommers
,
M. B.
,
Mayr
,
E.
, and
Bottlang
,
M.
, 2006, “
Malrotation in Total Knee Arthroplasty: Effect on Tibial Cortex Strain Captured By Laser-Based Strain Acquisition
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
(
6
), pp.
603
609
.
22.
Bellezza
,
A. J.
,
Rintalan
,
C. J.
,
Thompson
,
H. W.
,
Downs
,
J. C.
,
Hart
,
R. T.
, and
Burgoyne
,
C. F.
, 2003, “
Deformation of the Lamina Cribrosa and Anterior Scleral Canal Wall in Early Experimental Glaucoma
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
44
(
2
), pp.
623
637
.
23.
Downs
,
J. C.
,
Yang
,
H.
,
Girkin
,
C.
,
Sakata
,
L.
,
Bellezza
,
A.
,
Thompson
,
H.
, and
Burgoyne
,
C. F.
, 2007, “
Three-Dimensional Histomorphometry of the Normal and Early Glaucomatous Monkey Optic Nerve Head: Neural Canal and Subarachnoid Space Architecture
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
48
(
7
), pp.
3195
3208
.
24.
Bereiter-Hahn
,
J.
, 1995, “
Probing Biological Cells and Tissues With Acoustic Microscopy
,”
Advances in Acoustic Microscopy
,
Springer
,
Berlin
.
25.
Price
,
K. V.
,
Storn
,
R. M.
, and
Lampinen
,
J. A.
, 2005,
Differential Evolution: A Practical Approach to Global Optimization
,
Springer
,
Berlin
.
26.
Olberding
,
J. E.
, and
Suh
,
J. -K. F.
, 2006, “
A Dual Optimization Method for the Material Parameter Identification of a Biphasic Poroviscoelastic Hydrogel: Potential Application to Hypercompliant Soft Tissues
,”
J. Biomech.
0021-9290,
39
(
13
), pp.
2468
2475
.
27.
Sigal
,
I. A.
,
Flanagan
,
J. G.
,
Tertinegg
,
I.
, and
Ethier
,
C. R.
, 2008, “
Modeling Individual-Specific Human Optic Nerve Head Biomechanics. Part II: Influence of Material Properties
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
, pp.
99
109
.
28.
Battaglioli
,
J. L.
, and
Kamm
,
R. D.
, 1984, “
Measurements of the Compressive Properties of Scleral Tissue
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
25
(
1
), pp.
59
65
.
29.
Hernandez
,
M. R.
,
Luo
,
X. X.
,
Igoe
,
F.
, and
Neufeld
,
A. H.
, 1987, “
Extracellular Matrix of the Human Lamina Cribrosa
,”
Am. J. Ophthalmol.
0002-9394,
104
(
6
), pp.
567
576
.
30.
Rada
,
J. A.
,
Shelton
,
S.
, and
Norton
,
T. T.
, 2006, “
The Sclera and Myopia
,”
Exp. Eye Res.
0014-4835,
82
(
2
), pp.
185
200
.
31.
Komai
,
Y.
, and
Ushiki
,
T.
, 1991, “
The Three-Dimensional Organization of Collagen Fibrils in the Human Cornea and Sclera
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
32
(
8
), pp.
2244
2258
.
32.
Watson
,
P. G.
, and
Young
,
R. D.
, 2004, “
Scleral Structure, Organisation and Disease. A Review
,”
Exp. Eye Res.
0014-4835,
78
(
3
), pp.
609
623
.
33.
Girard
,
M. J. A.
,
Downs
,
J. C.
,
Burgoyne
,
C. F.
, and
Suh
,
J. -K. F.
, “
Experimental Surface Strain Mapping of Porcine Peripapillary Sclera Due to Elevations of Intraocular Pressure
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
4
), p.
041017
.
34.
De Rousseau
,
C. J.
, and
Bito
,
L. Z.
, 1981, “
Intraocular Pressure of Rhesus Monkeys (Macaca Mulatta). II. Juvenile Ocular Hypertension and Its Apparent Relationship to Ocular Growth
,”
Exp. Eye Res.
0014-4835,
32
(
4
), pp.
407
417
.
35.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
36.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1996, “
Computational Methods for Inverse Finite Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
136
, pp.
47
57
.
37.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysms
,”
J. Biomech.
0021-9290,
40
(
3
), pp.
693
696
.
38.
Sigal
,
I. A.
,
Flanagan
,
J. G.
,
Tertinegg
,
I.
, and
Ethier
,
C. R.
, 2004, “
Finite Element Modeling of Optic Nerve Head Biomechanics
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
45
(
12
), pp.
4378
4387
.
39.
Kokott
,
W.
, 1934, “
Das spaltlinienbild der sklera. (Ein beitrag zum funktionellen bau der sklera)
,”
Klin. Monatsbl. Augenheilkd.
0023-2165,
92
, pp.
177
185
.
40.
Burgoyne
,
C. F.
,
Downs
,
J. C.
,
Bellezza
,
A. J.
,
Suh
,
J. K.
, and
Hart
,
R. T.
, 2005, “
The Optic Nerve Head as a Biomechanical Structure: A New Paradigm for Understanding the Role of IOP-Related Stress and Strain in the Pathophysiology of Glaucomatous Optic Nerve Head Damage
,”
Prog. Retin. Eye Res.
,
24
(
1
), pp.
39
73
. 1350-9462
You do not currently have access to this content.