A millimeter-for-millimeter relation between an increase in length of an anterior cruciate ligament graft construct and an increase in anterior laxity has been demonstrated in multiple in vitro studies. Based on this relation, a 3 mm increase in length of the graft construct following surgery could manifest as a 3 mm increase in anterior laxity in vivo, which is considered clinically unstable. Hence, the two primary objectives were to determine whether the millimeter-for-millimeter relation exists in vivo for slippage-resistant fixation of a soft-tissue graft and, if it does not exist, then to what extent the increase in stiffness caused by biologic healing of the graft to the bone tunnel offsets the potential increase in anterior laxity resulting from lengthening at the sites of fixation. Sixteen subjects were treated with a fresh-frozen, nonirradiated, nonchemically processed tibialis allograft. Tantalum markers were injected into the graft, fixation devices, and bones. On the day of surgery and at 1, 2, 3, and 4 months, Roentgen stereophotogrammetric analysis was used to compute anterior laxity at 150 N of anterior force and the total slippage from both sites of fixation. A simple linear regression was performed to determine whether the millimeter-for-millimeter relation existed and a springs-in-series model of the graft construct was used to determine the extent to which the increase in stiffness caused by biological healing of the graft to the bone tunnel offset the increase in anterior laxity resulting from lengthening at the sites of fixation. There was no correlation between lengthening at the sites of fixation and the increase in anterior laxity at 1 month (R2=0.0, slope=0.2). Also, the increase in stiffness of the graft construct caused by biologic healing of the graft to the bone tunnel offset 0.7 mm of the 1.5 mm potential increase in anterior laxity resulting from lengthening at the sites of fixation. This relatively large offset of nearly 50% occurred because lengthening at the sites of fixation was small.

1.
Daniel
,
D. M.
,
Stone
,
M. L.
,
Sachs
,
R.
, and
Malcom
,
L.
, 1985, “
Instrumented Measurement of Anterior Knee Laxity in Patients With Acute Anterior Cruciate Ligament Disruption
,”
Am. J. Sports Med.
0363-5465,
13
(
6
), pp.
401
407
.
2.
Chang
,
S. K.
,
Egami
,
D. K.
,
Shaieb
,
M. D.
,
Kan
,
D. M.
, and
Richardson
,
A. B.
, 2003, “
Anterior Cruciate Ligament Reconstruction: Allograft Versus Autograft
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
19
(
5
), pp.
453
462
.
3.
Nyland
,
J.
,
Caborn
,
D. N.
,
Rothbauer
,
J.
,
Kocabey
,
Y.
, and
Couch
,
J.
, 2003, “
Two-Year Outcomes Following ACL Reconstruction With Allograft Tibialis Anterior Tendons: A Retrospective Study
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
11
(
4
), pp.
212
218
.
4.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
Lengthening of Double-Looped Tendon Graft Constructs in Three Regions After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Orthop. Res.
0736-0266,
22
(
4
), pp.
839
846
.
5.
Smith
,
C. K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2006, “
Lengthening of a Single-Loop Tibialis Tendon Graft Construct After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
437
442
.
6.
Cuppone
,
M.
, and
Seedhom
,
B. B.
, 2001, “
Effect of Implant Lengthening and Mode of Fixation on Knee Laxity After ACL Reconstruction With an Artificial Ligament: A Cadaveric Study
,”
J. Orthop. Sci.
0949-2658,
6
(
3
), pp.
253
261
.
7.
Grover
,
D. M.
,
Thompson
,
D. M.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2006, “
Empirical Relationship Between Lengthening an Anterior Cruciate Ligament Graft and Increases in Knee Anterior Laxity: A Human Cadaveric Study
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
6
), pp.
969
972
.
8.
Smith
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2008, “
Roentgen Stereophotogrammetric Analysis Methods for Determining Ten Causes of Lengthening of a Soft-Tissue Anterior Cruciate Ligament Graft Construct
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
4
), p.
041002
.
9.
Khan
,
R.
,
Konyves
,
A.
,
Rama
,
K. R.
,
Thomas
,
R.
, and
Amis
,
A. A.
, 2006, “
RSA Can Measure ACL Graft Stretching and Migration: Development of a New Method
,”
Clin. Orthop. Relat. Res.
0009-921X,
448
, pp.
139
145
.
10.
Ahmad
,
C. S.
,
Gardner
,
T. R.
,
Groh
,
M.
,
Arnouk
,
J.
, and
Levine
,
W. N.
, 2004, “
Mechanical Properties of Soft Tissue Femoral Fixation Devices for Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
32
(
3
), pp.
635
640
.
11.
Coleridge
,
S. D.
, and
Amis
,
A. A.
, 2004, “
A Comparison of Five Tibial-Fixation Systems in Hamstring-Graft Anterior Cruciate Ligament Reconstruction
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
12
(
5
), pp.
391
397
.
12.
Giurea
,
M.
,
Zorilla
,
P.
,
Amis
,
A. A.
, and
Aichroth
,
P.
, 1999, “
Comparative Pull-Out and Cyclic-Loading Strength Tests of Anchorage of Hamstring Tendon Grafts in Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
27
(
5
), pp.
621
625
.
13.
Magen
,
H. E.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 1999, “
Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts
,”
Am. J. Sports Med.
0363-5465,
27
(
1
), pp.
35
43
.
14.
Caborn
,
D. N.
, and
Selby
,
J. B.
, 2002, “
Allograft Anterior Tibialis Tendon With Bioabsorbable Interference Screw Fixation in Anterior Cruciate Ligament Reconstruction
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
18
(
1
), pp.
102
105
.
15.
Pearsall
,
A. W.
,
Hollis
,
J. M.
,
Russell
,
G. V.
Jr.
, and
Scheer
,
Z.
, 2003, “
A Biomechanical Comparison of Three Lower Extremity Tendons for Ligamentous Reconstruction About the Knee
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
19
(
10
), pp.
1091
1096
.
16.
Singhatat
,
W.
,
Lawhorn
,
K. W.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2002, “
How Four Weeks of Implantation Affect the Strength and Stiffness of a Tendon Graft in a Bone Tunnel: A Study of Two Fixation Devices in an Extraarticular Model in Ovine
,”
Am. J. Sports Med.
0363-5465,
30
(
4
), pp.
506
513
.
17.
Friden
,
T.
,
Ryd
,
L.
, and
Lindstrand
,
A.
, 1992, “
Laxity and Graft Fixation After Reconstruction of the Anterior Cruciate Ligament. A Roentgen Stereophotogrammetric Analysis of 11 Patients
,”
Acta Orthop. Scand.
0001-6470,
63
(
1
), pp.
80
84
.
18.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
How Cyclic Loading Affects the Migration of Radio-Opaque Markers Attached to Tendon Grafts Using a New Method: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
62
69
.
19.
Smith
,
C. K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2005, “
Migration of Radio-Opaque Markers Injected Into Tendon Grafts: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
887
890
.
20.
Roos
,
P. J.
,
Neu
,
C. P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2005, “
A New Tibial Coordinate System Improves the Precision of Anterior-Posterior Knee Laxity Measurements: A Cadaveric Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Orthop. Res.
0736-0266,
23
(
2
), pp.
327
333
.
21.
Matsumoto
,
A.
, and
Howell
,
S. M.
, 2005, “
EZLoc: A Simple, Rigid, Femoral Fixation Device for a Soft Tissue Anterior Cruciate Ligament Graft
,”
Oper. Tech. Orthop.
1048-6666,
20
(
3
), pp.
238
244
.
22.
Simmons
,
R.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2003, “
Effect of the Angle of the Femoral and Tibial Tunnels in the Coronal Plane and Incremental Excision of the Posterior Cruciate Ligament on Tension of an Anterior Cruciate Ligament Graft: An In Vitro Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
85-A
(
6
), pp.
1018
1029
.
23.
Howell
,
S. M.
,
Wallace
,
M. P.
,
Hull
,
M. L.
, and
Deutsch
,
M. L.
, 1999, “
Evaluation of the Single-Incision Arthroscopic Technique for Anterior Cruciate Ligament Replacement. A Study of Tibial Tunnel Placement, Intraoperative Graft Tension, and Stability
,”
Am. J. Sports Med.
0363-5465,
27
(
3
), pp.
284
293
.
24.
Howell
,
S. M.
,
Roos
,
P.
, and
Hull
,
M. L.
, 2005, “
Compaction of a Bone Dowel in the Tibial Tunnel Improves the Fixation Stiffness of a Soft Tissue Anterior Cruciate Ligament Graft—An In Vitro Study in Calf Tibia
,”
Am. J. Sports Med.
0363-5465,
33
(
5
), pp.
719
725
.
25.
Matsumoto
,
A.
,
Howell
,
S. M.
, and
Liu-Barba
,
D.
, 2006, “
Time-Related Changes in the Cross-Sectional Area of the Tibial Tunnel After Compaction of an Autograft Bone Dowel Alongside a Hamstring Graft
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
22
(
8
), pp.
855
860
.
26.
Solomonow
,
M.
,
Baratta
,
R.
,
Zhou
,
B. H.
,
Shoji
,
H.
,
Bose
,
W.
,
Beck
,
C.
, and
Dambrosia
,
R.
, 1987, “
The Synergistic Action of the Anterior Cruciate Ligament and Thigh Muscles in Maintaining Joint Stability
,”
Am. J. Sports Med.
0363-5465,
15
(
3
), pp.
207
213
.
27.
Feller
,
J.
,
Hoser
,
C.
, and
Webster
,
K.
, 2000, “
EMG Biofeedback Assisted KT-1000 Evaluation of Anterior Tibial Displacement
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
8
(
3
), pp.
132
136
.
28.
Fleming
,
B. C.
,
Renstrom
,
P. A.
,
Ohlen
,
G.
,
Johnson
,
R. J.
,
Peura
,
G. D.
,
Beynnon
,
B. D.
, and
Badger
,
G. J.
, 2001, “
The Gastrocnemius Muscle is an Antagonist of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
19
(
6
), pp.
1178
1184
.
29.
Markolf
,
K. L.
,
Graff-Radford
,
A.
, and
Amstutz
,
H. C.
, 1978, “
In Vivo Knee Stability. A Quantitative Assessment Using an Instrumented Clinical Testing Apparatus
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
60
(
5
), pp.
664
674
.
30.
Hodges
,
P. W.
, and
Bui
,
B. H.
, 1996, “
A Comparison of Computer-Based Methods for the Determination of Onset of Muscle Contraction Using Electromyography
,”
Electroencephalogr. Clin. Neurophysiol.
0013-4649,
101
(
6
), pp.
511
519
.
31.
Howell
,
S. M.
, and
Hull
,
M. L.
, 1998, “
Aggressive Rehabilitation Using Hamstring Tendons: Graft Construct, Tibial Tunnel Placement, Fixation Properties, and Clinical Outcome
,”
Am. J. Knee Surg.
0899-7403,
11
(
2
), pp.
120
127
.
32.
Howell
,
S. M.
, and
Taylor
,
M. A.
, 1996, “
Brace-Free Rehabilitation, With Early Return to Activity, for Knees Reconstructed With a Double-Looped Semitendinosus and Gracilis Graft
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
(
6
), pp.
814
825
.
33.
Smith
,
C. K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2008, “
Can Markers Injected Into a Single-Loop Anterior Cruciate Ligament Graft Define the Axes of the Tibial and Femoral Tunnels? A Cadaveric Study Using Roentgen Stereophotogrammetric Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
4
), p.
044503
.
34.
Haut Donahue
,
T. L.
,
Howell
,
S. M.
,
Hull
,
M. L.
, and
Gregersen
,
C.
, 2002, “
A Biomechanical Evaluation of Anterior and Posterior Tibialis Tendons as Suitable Single-Loop Anterior Cruciate Ligament Grafts
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
18
(
6
), pp.
589
597
.
35.
Butler
,
D. L.
,
Noyes
,
F. R.
, and
Grood
,
E. S.
, 1980, “
Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee. A Biomechanical Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
62
(
2
), pp.
259
270
.
36.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Davis
,
B. R.
,
Finerman
,
G. A.
, and
Slauterbeck
,
J. L.
, 1996, “
Biomechanical Consequences of Replacement of the Anterior Cruciate Ligament With a Patellar Ligament Allograft. Part I: Insertion of the Graft and Anterior-Posterior Testing
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
(
11
), pp.
1720
1727
.
37.
Zacharias
,
I.
,
Howell
,
S. M.
,
Hull
,
M. L.
, and
Lawhorn
,
K. W.
, 2001, “
In Vivo Calibration of a Femoral Fixation Device Transducer for Measuring Anterior Cruciate Ligament Graft Tension: A Study in an Ovine Model
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
4
), pp.
355
361
.
38.
Rodeo
,
S. A.
,
Arnoczky
,
S. P.
,
Torzilli
,
P. A.
,
Hidaka
,
C.
, and
Warren
,
R. F.
, 1993, “
Tendon-Healing in a Bone Tunnel. A Biomechanical and Histological Study in the Dog
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
75
(
12
), pp.
1795
1803
.
39.
Zantop
,
T.
,
Weimann
,
A.
,
Wolle
,
K.
,
Musahl
,
V.
,
Langer
,
M.
, and
Petersen
,
W.
, 2007, “
Initial and 6 Weeks Postoperative Structural Properties of Soft Tissue Anterior Cruciate Ligament Reconstructions With Cross-Pin or Interference Screw Fixation: An In Vivo Study in Sheep
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
23
(
1
), pp.
14
20
.
40.
Howell
,
S. M.
,
Gittins
,
M. E.
,
Gottlieb
,
J. E.
,
Traina
,
S. M.
, and
Zoellner
,
T. M.
, 2001, “
The Relationship Between the Angle of the Tibial Tunnel in the Coronal Plane and Loss of Flexion and Anterior Laxity After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
29
(
5
), pp.
567
574
.
41.
Anderson
,
A. F.
, and
Lipscomb
,
A. B.
, 1989, “
Preoperative Instrumented Testing of Anterior and Posterior Knee Laxity
,”
Am. J. Sports Med.
0363-5465,
17
(
3
), pp.
387
392
.
42.
Daniel
,
D. M.
, 1991, “
Assessing the Limits of Knee Motion
,”
Am. J. Sports Med.
0363-5465,
19
(
2
), pp.
139
147
.
43.
Edixhoven
,
P.
,
Huiskes
,
R.
,
de Graaf
,
R.
,
van Rens
,
T. J.
, and
Slooff
,
T. J.
, 1987, “
Accuracy and Reproducibility of Instrumented Knee-Drawer Tests
,”
J. Orthop. Res.
0736-0266,
5
(
3
), pp.
378
387
.
44.
Fleming
,
B. C.
,
Beynnon
,
B. D.
, and
Johnson
,
R. J.
, 1993, “
The Use of Knee Laxity Testers for the Determination of Anterior-Posterior Stability of the Knee: Pitfalls in Practice
,”
The Anterior Cruciate Ligament: Current and Future Concepts
,
D.
Jackson
, ed.,
Raven
,
New York
, pp.
239
250
.
45.
Eagar
,
P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2001, “
A Method for Quantifying the Anterior Load-Displacement Behavior of the Human Knee in Both the Low and High Stiffness Regions
,”
J. Biomech.
0021-9290,
34
(
12
), pp.
1655
1660
.
46.
Jackson
,
D. W.
,
Grood
,
E. S.
,
Goldstein
,
J. D.
,
Rosen
,
M. A.
,
Kurzweil
,
P. R.
,
Cummings
,
J. F.
, and
Simon
,
T. M.
, 1993, “
A Comparison of Patellar Tendon Autograft and Allograft Used for Anterior Cruciate Ligament Reconstruction in the Goat Model
,”
Am. J. Sports Med.
0363-5465,
21
(
2
), pp.
176
185
.
47.
Milano
,
G.
,
Mulas
,
P. D.
,
Ziranu
,
F.
,
Piras
,
S.
,
Manunta
,
A.
, and
Fabbriciani
,
C.
, 2006, “
Comparison Between Different Femoral Fixation Devices for ACL Reconstruction With Doubled Hamstring Tendon Graft: A Biomechanical Analysis
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
22
(
6
), pp.
660
668
.
48.
To
,
J. T.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 1999, “
Contributions of Femoral Fixation Methods to the Stiffness of Anterior Cruciate Ligament Replacements at Implantation
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
15
(
4
), pp.
379
387
.
49.
Grover
,
D. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2005, “
Early Tension Loss in an Anterior Cruciate Ligament Graft. A Cadaver Study of Four Tibial Fixation Devices
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
87
(
2
), pp.
381
390
.
50.
Karrholm
,
J.
,
Selvik
,
G.
,
Elmqvist
,
L. G.
,
Hansson
,
L. I.
, and
Jonsson
,
H.
, 1988, “
Three-Dimensional Instability of the Anterior Cruciate Deficient Knee
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
70
(
5
), pp.
777
783
.
51.
Brucker
,
P. U.
,
Lorenz
,
S.
, and
Imhoff
,
A. B.
, 2006, “
Aperture Fixation in Arthroscopic Anterior Cruciate Ligament Double-Bundle Reconstruction
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
22
(
11
), pp.
1250.e1
1250.e6
.
52.
Conner
,
C. S.
,
Perez
,
B. A.
,
Morris
,
R. P.
,
Buckner
,
J. W.
,
Buford
,
W. L.
, and
Ivey
,
F. M.
, 2009, “
Biomechanical Comparison of Three Femoral Fixation Devices for ACL Reconstruction
,”
Annual Meeting of the ORS
, Las Vegas, NV.
53.
Nurmi
,
J. T.
,
Sievanen
,
H.
,
Kannus
,
P.
,
Jarvinen
,
M.
, and
Jarvinen
,
T. L. N.
, 2004, “
Porcine Tibia is a Poor Substitute for Human Cadaver Tibia for Evaluating Interference Screw Fixation
,”
Am. J. Sports Med.
0363-5465,
32
(
3
), pp.
765
771
.
You do not currently have access to this content.