Abstract

Cardiovascular diseases are the number one cause of death in the world, making the understanding of hemodynamics and the development of treatment options imperative. The effect of motion of the coronary artery due to the motion of the myocardium is not extensively studied. In this work, we focus our investigation on the localized hemodynamic effects of dynamic changes in curvature and torsion. It is our objective to understand and reveal the mechanism by which changes in curvature and torsion contribute towards the observed wall shear stress distribution. Such adverse hemodynamic conditions could have an effect on circumferential intimal thickening. Three-dimensional spatiotemporally resolved computational fluid dynamics (CFD) simulations of pulsatile flow with moving wall boundaries were carried out for a simplified coronary artery with physiologically relevant flow parameters. A model with stationary walls is used as the baseline control case. In order to study the effect of curvature and torsion variation on local hemodynamics, this baseline model is compared to models where the curvature, torsion, and both curvature and torsion change. The simulations provided detailed information regarding the secondary flow dynamics. The results suggest that changes in curvature and torsion cause critical changes in local hemodynamics, namely, altering the local pressure and velocity gradients and secondary flow patterns. The wall shear stress (WSS) varies by a maximum of 22% when the curvature changes, by 3% when the torsion changes, and by 26% when both the curvature and torsion change. The oscillatory shear stress (OSI) varies by a maximum of 24% when the curvature changes, by 4% when the torsion changes, and by 28% when both the curvature and torsion change. We demonstrate that these changes are attributed to the physical mechanism associating the secondary flow patterns to the production of vorticity (vorticity flux) due to the wall movement. The secondary flow patterns and augmented vorticity flux affect the wall shear stresses. As a result, this work reveals how changes in curvature and torsion act to modify the near wall hemodynamics of arteries.

References

1.
Wang
,
C. Y.
, 1981, “
On the Low-Reynolds-Number Flow in a Helical Pipe
,”
J. Fluid Mech.
,
108
, pp.
185
194
.
2.
Germano
,
M.
, 1982, “
On the Effect of Torsion on a Helical Pipe Flow
,”
J. Fluid Mech.
,
125
, pp.
1
8
.
3.
Kao
,
H. C.
, 1987, “
Torsion Effect on Fully Developed Flow in a Helical Pipe
,”
J. Fluid Mech.
,
184
, pp.
335
356
.
4.
Yamamoto
,
K.
,
Yanase
,
S.
, and
Yoshida
,
T.
, 1994, “
Torsion Effect on the Flow in a Helical Pipe
,”
Fluid Dyn. Res.
,
14
, pp.
259
273
.
5.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
, 1983, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
.
15
, pp.
461
512
.
6.
Gammack
,
D.
, and
Hydon
,
P. E.
, 2001, “
Flow in Pipes with Non-Uniform Curvature and Torsion
,”
J. Fluid Mech.
,
433
, pp.
357
382
. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=78603&fulltextType=RA&fileId=S0022112001003548
7.
Peterson
,
S. D.
and
Plesniak
,
M. W.
, 2008, “
The Influence of Inlet Velocity Profile and Secondary Flow on Pulsatile Flow in a Model Artery With Stenosis
,”
J. Fluid Mech.
,
616
, pp.
263
301
.
8.
Moore
,
J. E.
, Jr.
,
Guggenheim
,
N.
,
Delfino
,
A.
,
Doriot
,
P. A.
,
Dorsaz
,
P. A.
,
Rutishhauser
,
W.
, and
Meister
,
J. J.
, 1994, “
Preliminary Analysis of the Effects of Blood Vessel Movement on Blood Flow Patterns in the Coronary Arteries
,”
ASME J. Biomech. Eng.
,
116
, pp.
302
306
.
9.
Santamarina
,
A.
,
Weydahl
,
E.
,
Siegel
,
J. M.
, Jr.
, and
Moore
,
J. E.
, Jr.
, 1998, “
Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature
,”
Ann. Biomed. Eng.
,
26
, pp.
944
954
.
10.
Moore
,
J. E.
,
Weydahl
,
E. S.
, and
Santamarina
,
A.
, 2001, “
Frequency Dependence of Dynamic Curvature Effects on Flow Through Coronary Arteries
,”
ASME J. Biomech. Eng.
,
123
, pp.
129
133
.
11.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
, 2004, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
,
37
, pp.
1767
1775
.
12.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
, 2003, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
,
31
, pp.
420
429
.
13.
Theodorakakos
,
A.
, 2008, “
Simulation of Cardiac Motion on Non-Newtonian, Pulsating Flow Development in the Human Left Anterior Descending Coronary Artery
,”
Phys. Med. Biol.
,
53
(
18
), pp.
4875
4892
.
14.
Torii
,
R.
, 2009, “
The Effect of Dynamic Vessel Motion on Haemodynamic Parameters in the Right Coronary Artery: A Combined MR and CFD Study
,”
Br. J. Radiol.
,
82
(
1
), pp.
S24
S32
.
15.
Ding
,
Z. H.
and
Friedman
,
M. H.
, 2000, “
Dynamics of Human Coronary Arterial Motion and Its Potential Role in Coronary Atherogenesis
,”
ASME J. Biomech. Eng.
,
122
(
5
), pp.
488
492
.
16.
Ding
,
Z. H.
and
Friedman
,
M. H.
, 2000, “
Quantification of 3-D Coronary Arterial Motion Using Clinical Biplane Cineangiograms
,”
Int. J. Card. Imaging
,
16
(
5
), pp.
331
346
.
17.
Zhu
,
H.
,
Ding
,
Z. H.
,
Piana
,
R. N.
,
Gehrig
,
T. R.
, and
Friedman
,
M. H.
, 2009, “
Cataloguing the Geometry of the Human Coronary Arteries: A Potential Tool for Predicting Risk of Coronary Artery Disease
,”
Int. J. Cardiol.
,
135
(
1
), pp.
43
52
.
18.
Brinkman
,
A. M.
,
Baker
,
P. B.
,
Newman
,
W. P.
,
Vigorito
,
R.
, and
Friedman
,
M. H.
, 1994, “
Variability of Human Coronary-Artery Geometry—An Angiographic Study of the Left Anterior Descending Arteries of 30 Autopsy Hearts
,”
Ann. Biomed. Eng.
,
22
(
1
), pp.
34
44
.
19.
Patel
,
D. J.
and
Vaishnav
,
R. N. J. A.
, 1980,
Basic Hemodynamics and Its Role in Disease Processes
, with chapters by V. J. Ferrans, H. B. Atabek, D. L. Fry, L. J. Thomas, J. C. Greenfield, R. N. Vaishnav, and D. J. Patel, ed.,
University Park
,
Baltimore
.
20.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1993, “
The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis
,”
Proceedings of the 1993 ASME/AICHE/ASCE Summer Bioengineering Conference
, Forum on the 20th Anniversary of ASME Biomechanics Symposium,
ASME
, pp.
588
594
.
21.
Kamiya
,
A.
,
Bukhari
,
R.
, and
Togawa
,
T.
, 1984, “
Adaptive Regulation of Wall Shear-Stress Optimizing Vascular Tree Function
,”
Bull. Math. Biol.
,
46
(
1
), pp.
127
137
.
22.
Kamiya
,
A.
, and
Togawa
,
T.
, 1980, “
Adaptive Regulation of Wall Shear-Stress to Flow Change in the Canine Carotid Artery
,”
Am. Physiol.
,
239
(
1
), pp.
H14
H21
. http://ajpheart.physiology.org/content/239/1/H14.short
23.
Perić
,
M.
,
Kessler
,
R.
, and
Scheuerer
,
G.
, 1988, “
Comparison of Finite-Volume Numerical Methods With Staggered and Colocated Grids
,”
Comput. Fluids
,
16
(
4
), pp.
389
403
.
24.
Tafti
,
D. K.
,
Sewall
,
E. A.
,
Graham
,
A. B.
, and
Thole
,
K. A.
, 2006, “
Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
243
258
.
25.
Tafti
,
D. K.
, 2001, “
GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
ASME Fluids Engineering Division (Publication)
, pp.
347
356
.
26.
Tafti
,
D. K.
, 2005, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int.l J. Heat Fluid Flow
,
26
(
1
), pp.
92
104
.
27.
Elyyan
,
M. A.
,
Rozati
,
A.
, and
Tafti
,
D. K.
, 2008, “
Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
11-12
), pp.
2950
2966
.
28.
Selvarasu
,
N. K. C.
,
Tafti
,
D. K.
, and
Vlachos
,
P. P.
, 2011, “
Hydrodynamic Effects of Compliance Mismatch in Stented Arteries
,”
ASME J Biomech Eng
,
133
(
2
), p.
021008
.
29.
Gopalakrishnan
,
P.
, and
Tafti
,
D. K.
, 2009, “
A Parallel Boundary Fitted Dynamic Mesh Solver for Applications to Flapping Flight
,”
Comput. Fluids
,
38
(
8
), pp.
1592
1607
.
30.
Tafti
,
D. K.
, 2011, “
Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries
,”
Advances in Computational Fluid Dynamics and Heat Transfer
,
R. S.
Amano Bengt
, ed.,
WIT
,
Southampton, UK
.
31.
Gopalakrishnan
,
P.
, and
Tafti
,
D. K.
, 2009, “
Effect of Reynolds Number, Tip Shape, and Stroke Deviation on Flapping Flight
,”
Proceedings of the 39th AIAA Fluid Dynamics Conference, Paper No. AIAA-2009-4193
.
32.
Gopalakrishnan
,
P.
, and
Tafti
,
D. K.
, 2008, “
Effect of Wing Flexibility on Lift and Thrust Production in Flapping Flight
,”
AIAA J.
(submitted).
33.
Gopalakrishnan
,
P.
, and
Tafti
,
D. K.
, 2009, “
Effect of Rotation and Angle of Attack on Force Production of Flapping Flights
,”
AIAA J.
(in press).
34.
Gopalakrishnan
,
P.
, and
Tafti
,
D. K.
, 2008, “
Effect of Phasing of Rotation on Delayed Stall in Flapping Flights Related to Mavs at Re = 10,000
,”
AIAA 38th Fluid Dynamic Conference
, Seattle, Washington.
35.
Gopalakrishnan
,
P.
, and
Tafti
,
D. K.
, 2009, “
A Parallel Multiblock Boundary Fitted Dynamic Mesh Solver for Simulating Flows with Complex Boundary Movement
,”
Comput. Fluids
,
38
, pp.
1592
1607
.
36.
Lighthill
,
M. J.
, 1963,
Laminar Boundary Layers
,
Dover
,
New York
.
37.
Morton
,
B. R.
, 1984, “
The Generation and Decay of Vorticity
,”
Geophys. Astrophys. Fluid Dyn.
,
28
(
3-4
), pp.
277
308
.
38.
Karri
,
S.
, 2009, “
Laminar and Transitional Flow Disturbances in Diseased and Stented Arteries
,” Ph.D. dissertation, Virginia Tech, Blacksburg.
39.
Canic
,
S.
,
Hartley
,
C. J.
,
Rosenstrauch
,
D.
,
Tambaca
,
J.
,
Guidoboni
,
G.
, and
Mikelic
,
A.
, 2006, “
Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics, and Experimental Validation
,”
Ann. Biomed. Eng.
,
34
(
4
), pp.
575
592
.
40.
Canic
,
S.
, and
Kim
,
E. H.
, 2003, “
Mathematical Analysis of the Quasilinear Effects in a Hyperbolic Model Blood Flow Through Compliant Axi-Symmetric Vessels
,”
Math. Methods Appl/Sci.
,
26
(
14
), pp.
1161
1186
.
41.
Canic
,
S.
,
Lamponi
,
D.
,
Mikelic
,
A.
, and
Tambaca
,
J.
, 2005, “
Self-Consistent Effective Equations Modeling Blood Flow in Medium-To-Large Compliant Arteries
,”
Multiscale Model. Simul.
,
3
(
3
), pp.
559
596
.
42.
Canic
,
S.
, and
Mikelic
,
A.
, 2003, “
Effective Equations Modeling the Flow of a Viscous Incompressible Fluid Through a Long Elastic Tube Arising in the Study of Blood Flow Through Small Arteries
,”
SIAM J. Appl. Dyn. Syst.
,
2
(
3
), pp.
431
463
.
43.
Canic
,
S.
,
Tambaca
,
J.
,
Mikelic
,
A.
,
Hartley
,
C. J.
,
Mirkovic
,
D.
,
Chavez
,
J.
, and
Rosenstrauch
,
D.
, “
Blood Flow Through Axially Symmetric Sections of Compliant Vessels: New Effective Closed Models
,”
Proceedings of the 26th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society
,
IEEE
, pp.
3696
3699
.
44.
Mikelic
,
A.
,
Guidoboni
,
G.
, and
Canic
,
S.
, 2007, “
Fluid-Structure Interaction in a Pre-Stressed Tube With Thick Elastic Walls I: The Stationary Stokes Problem
,”
Networks Heterog. Media
,
2
(
3
), pp.
396
423
.
45.
Shijie
,
L.
and
Masliyah
,
J. H.
, 1993, “
Axially Invariant Laminar Flow in Helical Pipes With a Finite Pitch
,”
J. Fluid Mech.
,
251
, pp.
315
353
.
46.
Yamamoto
,
K.
,
Aribowo
,
A.
,
Hayamizu
,
Y.
,
Hirose
,
T.
, and
Kawahara
,
K.
, 2002, “
Visualization of the Flow in a Helical Pipe
,”
Fluid Dyn. Res.
,
30
, pp.
251
267
.
47.
He
,
X. J.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.
You do not currently have access to this content.