Advances in computational mechanics, constitutive modeling, and techniques for subject-specific modeling have opened the door to patient-specific simulation of the relationships between joint mechanics and osteoarthritis (OA), as well as patient-specific preoperative planning. This article reviews the application of computational biomechanics to the simulation of joint contact mechanics as relevant to the study of OA. This review begins with background regarding OA and the mechanical causes of OA in the context of simulations of joint mechanics. The broad range of technical considerations in creating validated subject-specific whole joint models is discussed. The types of computational models available for the study of joint mechanics are reviewed. The types of constitutive models that are available for articular cartilage are reviewed, with special attention to choosing an appropriate constitutive model for the application at hand. Issues related to model generation are discussed, including acquisition of model geometry from volumetric image data and specific considerations for acquisition of computed tomography and magnetic resonance imaging data. Approaches to model validation are reviewed. The areas of parametric analysis, factorial design, and probabilistic analysis are reviewed in the context of simulations of joint contact mechanics. Following the review of technical considerations, the article details insights that have been obtained from computational models of joint mechanics for normal joints; patient populations; the study of specific aspects of joint mechanics relevant to OA, such as congruency and instability; and preoperative planning. Finally, future directions for research and application are summarized.

References

1.
Buckwalter
,
J. A.
,
Saltzman
,
C.
, and
Brown
,
T.
,
2004
, “
The Impact of Osteoarthritis: Implications for Research
,”
Clin. Orthop. Relat. Res.
, (
427 Suppl
), pp.
S6
S15
.
2.
Lawrence
,
R. C.
,
Felson
,
D. T.
,
Helmick
,
C. G.
,
Arnold
,
L. M.
,
Choi
,
H.
,
Deyo
,
R. A.
,
Gabriel
,
S.
,
Hirsch
,
R.
,
Hochberg
,
M. C.
,
Hunder
,
G. G.
,
Jordan
,
J. M.
,
Katz
,
J. N.
,
Kremers
,
H. M.
, and
Wolfe
,
F.
,
2008
, “
Estimates of the Prevalence of Arthritis and Other Rheumatic Conditions in the United States—Part II
,”
Arthritis Rheum.
,
58
(
1
), pp.
26
35
.10.1002/art.23176
3.
Brown
,
T. D.
,
Johnston
,
R. C.
,
Saltzman
,
C. L.
,
Marsh
,
J. L.
, and
Buckwalter
,
J. A.
,
2006
, “
Posttraumatic Osteoarthritis: A First Estimate of Incidence, Prevalence, and Burden of Disease
,”
J. Orthop. Trauma
,
20
(
10
), pp.
739
744
.10.1097/01.bot.0000246468.80635.ef
4.
Murphy
,
L.
, and
Helmick
,
C. G.
,
2012
, “
The Impact of Osteoarthritis in the United States: A Population-Health Perspective
,”
Am. J. Nurs.
,
112
(
3 Suppl 1
), pp.
S13
S19
.10.1097/01.NAJ.0000412646.80054.21
5.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
R.
, and
Huiskes
,
R.
,
2005
, “
The Role of Computational Models in the Search for the Mechanical Behavior and Damage Mechanisms of Articular Cartilage
,”
Med. Eng. Phys.
,
27
(
10
), pp.
810
826
.10.1016/j.medengphy.2005.03.004
6.
Carter
,
D. R.
,
Beaupre
,
G. S.
,
Wong
,
M.
,
Smith
,
R. L.
,
Andriacchi
,
T. P.
, and
Schurman
,
D. J.
,
2004
, “
The Mechanobiology of Articular Cartilage Development and Degeneration
,”
Clin. Orthop. Relat. Res.
, (
427 Suppl
), pp.
S69
S77
.
7.
Guilak
,
F.
,
Fermor
,
B.
,
Keefe
,
F. J.
,
Kraus
,
V. B.
,
Olson
,
S. A.
,
Pisetsky
,
D. S.
,
Setton
,
L. A.
, and
Weinberg
,
J. B.
,
2004
, “
The Role of Biomechanics and Inflammation in Cartilage Injury and Repair
,”
Clin. Orthop. Relat. Res.
, (
423
), pp.
17
26
.
8.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
,
2000
, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Annu. Rev. Biomed. Eng.
,
2
, pp.
691
713
.10.1146/annurev.bioeng.2.1.691
9.
Guilak
,
F.
, and
Hung
,
C. T.
,
2005
, “
Physical Regulation of Cartilage Metabolism
,”
Basic Orthopaedic Biomechanics and Mechano-Biology
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott Williams & Wilkins
,
Philadephia
.
10.
Mow
,
V. C.
,
Gu
,
W. Y.
, and
Chen
,
F. H.
,
2005
, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics and Mechano-Biology
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott Williams & Wilkins
,
Philadephia
.
11.
Setton
,
L. A.
,
Elliott
,
D. M.
, and
Mow
,
V. C.
,
1999
, “
Altered Mechanics of Cartilage With Osteoarthritis: Human Osteoarthritis and an Experimental Model of Joint Degeneration
,”
Osteoarthritis Cartilage
,
7
(
1
), pp.
2
14
.10.1053/joca.1998.0170
12.
Haut
,
R. C.
,
Ide
,
T. M.
, and
De Camp
,
C. E.
,
1995
, “
Mechanical Responses of the Rabbit Patello-femoral Joint to Blunt Impact
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
402
408
.10.1115/1.2794199
13.
Newberry
,
W. N.
,
Garcia
,
J. J.
,
Mackenzie
,
C. D.
,
Decamp
,
C. E.
, and
Haut
,
R. C.
,
1998
, “
Analysis of Acute Mechanical Insult in an Animal Model of Post-traumatic Osteoarthrosis
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
704
709
.10.1115/1.2834882
14.
Li
,
X.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
,
1995
, “
An Analytical Model to Study Blunt Impact Response of the Rabbit P-F Joint
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
485
491
.10.1115/1.2794212
15.
Silyn-Roberts
,
H.
, and
Broom
,
N. D.
,
1990
, “
Fracture Behaviour of Cartilage-on-Bone in Response to Repeated Impact Loading
,”
Connect. Tissue Res.
,
24
(
2
), pp.
143
156
.10.3109/03008209009152430
16.
Atkinson
,
P. J.
, and
Haut
,
R. C.
,
1995
, “
Subfracture Insult to the Human Cadaver Patellofemoral Joint Produces Occult Injury
,”
J. Orthop. Res.
,
13
(
6
), pp.
936
944
.10.1002/jor.1100130619
17.
Borrelli
,
J.
, Jr.
,
Tinsley
,
K.
,
Ricci
,
W. M.
,
Burns
,
M.
,
Karl
,
I. E.
, and
Hotchkiss
,
R.
,
2003
, “
Induction of Chondrocyte Apoptosis Following Impact Load
,”
J. Orthop. Trauma
,
17
(
9
), pp.
635
641
.10.1097/00005131-200310000-00006
18.
Tochigi
,
Y.
,
Buckwalter
,
J. A.
,
Martin
,
J. A.
,
Hillis
,
S. L.
,
Zhang
,
P.
,
Vaseenon
,
T.
,
Lehman
,
A. D.
, and
Brown
,
T. D.
,
2011
, “
Distribution and Progression of Chondrocyte Damage in a Whole-Organ Model of Human Ankle Intra-articular Fracture
,”
J. Bone Jt. Surg.
,
93
(
6
), pp.
533
539
.10.2106/JBJS.I.01777
19.
Lewis
,
J. L.
,
Deloria
,
L. B.
,
Oyen-Tiesma
,
M.
,
Thompson
,
R. C.
, Jr.
,
Ericson
,
M.
, and
Oegema
,
T. R.
, Jr.
,
2003
, “
Cell Death After Cartilage Impact Occurs Around Matrix Cracks
,”
J. Orthop. Res.
,
21
(
5
), pp.
881
887
.10.1016/S0736-0266(03)00039-1
20.
Borrelli
,
J.
, Jr.
,
Zhu
,
Y.
,
Burns
,
M.
,
Sandell
,
L.
, and
Silva
,
M. J.
,
2004
, “
Cartilage Tolerates Single Impact Loads of as Much as Half the Joint Fracture Threshold
,”
Clin. Orthop. Relat. Res.
, (
426
), pp.
266
273
.
21.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
,
1998
, “
An Investigation of Biphasic Failure Criteria for Impact-Induced Fissuring of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
(
4
), pp.
536
537
.10.1115/1.2798025
22.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
,
1998
, “
Impact-Induced Fissuring of Articular Cartilage: An Investigation of Failure Criteria
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
181
187
.10.1115/1.2798300
23.
Flachsmann
,
E. R.
,
Broom
,
N. D.
, and
Oloyede
,
A.
,
1995
, “
A Biomechanical Investigation of Unconstrained Shear Failure of the Osteochondral Region Under Impact Loading
,”
Clin. Biomech.
,
10
(
3
), pp.
156
165
.10.1016/0268-0033(95)93706-Y
24.
Garcia
,
J. J.
,
Altiero
,
N. J.
, and
Haut
,
R. C.
,
1998
, “
An Approach for the Stress Analysis of Transversely Isotropic Biphasic Cartilage Under Impact Load
,”
ASME J. Biomech. Eng.
,
120
(
5
), pp.
608
613
.10.1115/1.2834751
25.
Furman
,
B. D.
,
Strand
,
J.
,
Hembree
,
W. C.
,
Ward
,
B. D.
,
Guilak
,
F.
, and
Olson
,
S. A.
,
2007
, “
Joint Degeneration Following Closed Intraarticular Fracture in the Mouse Knee: A Model of Posttraumatic Arthritis
,”
J. Orthop. Res.
,
25
(
5
), pp.
578
592
.10.1002/jor.20331
26.
Anderson
,
D. D.
,
Chubinskaya
,
S.
,
Guilak
,
F.
,
Martin
,
J. A.
,
Oegema
,
T. R.
,
Olson
,
S. A.
, and
Buckwalter
,
J. A.
,
2011
, “
Post-Traumatic Osteoarthritis: Improved Understanding and Opportunities for Early Intervention
,”
J. Orthop. Res.
,
29
(
6
), pp.
802
809
.10.1002/jor.21359
27.
Furman
,
B. D.
,
Olson
,
S. A.
, and
Guilak
,
F.
,
2006
, “
The Development of Posttraumatic Arthritis After Articular Fracture
,”
J. Orthop. Trauma
,
20
(
10
), pp.
719
725
.10.1097/01.bot.0000211160.05864.14
28.
Smith
,
R. L.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
,
2004
, “
Pressure and Shear Differentially Alter Human Articular Chondrocyte Metabolism: A Review
,”
Clin. Orthop. Relat. Res.
, (
427 Suppl
), pp.
S89
S95
.
29.
Martin
,
J. A.
, and
Buckwalter
,
J. A.
,
2006
, “
Post-Traumatic Osteoarthritis: The Role of Stress Induced Chondrocyte Damage
,”
Biorheology
,
43
(
3–4
), pp.
517
521
.
30.
Murphy
,
L.
,
Schwartz
,
T. A.
,
Helmick
,
C. G.
,
Renner
,
J. B.
,
Tudor
,
G.
,
Koch
,
G.
,
Dragomir
,
A.
,
Kalsbeek
,
W. D.
,
Luta
,
G.
, and
Jordan
,
J. M.
,
2008
, “
Lifetime Risk of Symptomatic Knee Osteoarthritis
,”
Arthritis Rheum.
,
59
(
9
), pp.
1207
1213
.10.1002/art.24021
31.
Murphy
,
L. B.
,
Helmick
,
C. G.
,
Schwartz
,
T. A.
,
Renner
,
J. B.
,
Tudor
,
G.
,
Koch
,
G. G.
,
Dragomir
,
A. D.
,
Kalsbeek
,
W. D.
,
Luta
,
G.
, and
Jordan
,
J. M.
,
2010
, “
One in Four People May Develop Symptomatic Hip Osteoarthritis in His or Her Lifetime
,”
Osteoarthritis Cartilage
,
18
(
11
), pp.
1372
1379
.10.1016/j.joca.2010.08.005
32.
Chard
,
M. D.
, and
Hazleman
,
B. L.
,
1987
, “
Shoulder Disorders in the Elderly (a Hospital Study)
,”
Ann. Rheum. Dis.
,
46
(
9
), pp.
684
687
.10.1136/ard.46.9.684
33.
Nakagawa
,
Y.
,
Hyakuna
,
K.
,
Otani
,
S.
,
Hashitani
,
M.
, and
Nakamura
,
T.
,
1999
, “
Epidemiologic Study of Glenohumeral Osteoarthritis With Plain Radiography
,”
J. Shoulder Elbow Surg.
,
8
(
6
), pp.
580
584
.10.1016/S1058-2746(99)90093-9
34.
van Schaardenburg
,
D.
,
Van den Brande
,
K. J.
,
Ligthart
,
G. J.
,
Breedveld
,
F. C.
, and
Hazes
,
J. M.
,
1994
, “
Musculoskeletal Disorders and Disability in Persons Aged 85 and Over: A Community Survey
,”
Ann. Rheum. Dis.
,
53
(
12
), pp.
807
811
.10.1136/ard.53.12.807
35.
Buckwalter
,
J. A.
, and
Saltzman
,
C. L.
,
1999
, “
Ankle Osteoarthritis: Distinctive Characteristics
,”
Instr. Course Lect.
,
48
, pp.
233
241
.
36.
Zhang
,
Y.
, and
Jordan
,
J. M.
,
2008
, “
Epidemiology of Osteoarthritis
,”
Rheum. Dis. Clin. North Am.
,
34
(
3
), pp.
515
529
.10.1016/j.rdc.2008.05.007
37.
Jeong
,
H. J.
,
Lee
,
S. H.
, and
Ko
,
C. S.
,
2012
, “
Meniscectomy
,”
Knee Surg. Relat. Res.
,
24
(
3
), pp.
129
136
.10.5792/ksrr.2012.24.3.129
38.
Tucker
,
B.
,
Khan
,
W.
,
Al-Rashid
,
M.
, and
Al-Khateeb
,
H.
,
2012
, “
Tissue Engineering for the Meniscus: A Review of the Literature
,”
Open Orthop. J.
,
6
, pp.
348
351
.10.2174/1874325001206010348
39.
Crema
,
M. D.
,
Roemer
,
F. W.
,
Felson
,
D. T.
,
Englund
,
M.
,
Wang
,
K.
,
Jarraya
,
M.
,
Nevitt
,
M. C.
,
Marra
,
M. D.
,
Torner
,
J. C.
,
Lewis
,
C. E.
, and
Guermazi
,
A.
,
2012
, “
Factors Associated With Meniscal Extrusion in Knees With or at Risk for Osteoarthritis: The Multicenter Osteoarthritis Study
,”
Radiology
,
264
(
2
), pp.
494
503
.10.1148/radiol.12110986
40.
Knoop
,
J.
,
Dekker
,
J.
,
Klein
,
J. P.
,
van der Leeden
,
M.
,
van der Esch
,
M.
,
Reiding
,
D.
,
Voorneman
,
R. E.
,
Gerritsen
,
M.
,
Roorda
,
L. D.
,
Steultjens
,
M. P.
, and
Lems
,
W. F.
,
2012
, “
Biomechanical Factors and Physical Examination Findings in Osteoarthritis of the Knee: Associations With Tissue Abnormalities Assessed by Conventional Radiography and High Resolution 3.0 Tesla Magnetic Resonance Imaging
,”
Arthritis Res. Ther.
,
14
(
5
), p.
R212
.10.1186/ar4050
41.
Lementowski
,
P. W.
, and
Zelicof
,
S. B.
,
2008
, “
Obesity and Osteoarthritis
,”
Am. J. Orthop.
,
37
(
3
), pp.
148
151
.
42.
Suri
,
P.
,
Morgenroth
,
D. C.
, and
Hunter
,
D. J.
,
2012
, “
Epidemiology of Osteoarthritis and Associated Comorbidities
,”
PM&R
,
4
(
5 Suppl
), pp.
S10
S19
.10.1016/j.pmrj.2012.01.007
43.
Iliadis
,
A. D.
,
Jaiswal
,
P. K.
,
Khan
,
W.
, and
Johnstone
,
D.
,
2012
, “
The Operative Management of Patella Malalignment
,”
Open Orthop. J.
,
6
, pp.
327
339
.10.2174/1874325001206010327
44.
Bardakos
,
N. V.
, and
Villar
,
R. N.
,
2009
, “
Predictors of Progression of Osteoarthritis in Femoroacetabular Impingement: A Radiological Study With a Minimum of Ten Years Follow-up
,”
J. Bone Jt. Surg.
,
91
(
2
), pp.
162
169
.10.1302/0301-620X.91B2.21137
45.
Beck
,
M.
,
Kalhor
,
M.
,
Leunig
,
M.
, and
Ganz
,
R.
,
2005
, “
Hip Morphology Influences the Pattern of Damage to the Acetabular Cartilage: Femoroacetabular Impingement as a Cause of Early Osteoarthritis of the Hip
,”
J. Bone Jt. Surg.
,
87
(
7
), pp.
1012
1018
.10.1302/0301-620X.87B7.15203
46.
Cooperman
,
D. R.
,
Wallensten
,
R.
, and
Stulberg
,
S. D.
,
1983
, “
Acetabular Dysplasia in the Adult
,”
Clin. Orthop. Relat. Res.
, (
175
), pp.
79
85
.
47.
Croft
,
P.
,
Cooper
,
C.
,
Wickham
,
C.
, and
Coggon
,
D.
,
1991
, “
Osteoarthritis of the Hip and Acetabular Dysplasia
,”
Ann. Rheum. Dis.
,
50
(
5
), pp.
308
310
.10.1136/ard.50.5.308
48.
Ganz
,
R.
,
Leunig
,
M.
,
Leunig-Ganz
,
K.
, and
Harris
,
W. H.
,
2008
, “
The Etiology of Osteoarthritis of the Hip: An Integrated Mechanical Concept
,”
Clin. Orthop. Relat. Res.
,
466
(
2
), pp.
264
272
.10.1007/s11999-007-0060-z
49.
Ganz
,
R.
,
Parvizi
,
J.
,
Beck
,
M.
,
Leunig
,
M.
,
Notzli
,
H.
, and
Siebenrock
,
K. A.
,
2003
, “
Femoroacetabular Impingement: A Cause for Osteoarthritis of the Hip
,”
Clin. Orthop. Relat. Res.
, (
417
), pp.
112
120
.
50.
Harris
,
W. H.
,
1986
, “
Etiology of Osteoarthritis of the Hip
,”
Clin. Orthop. Relat. Res.
, (
213
), pp.
20
33
.
51.
Jessel
,
R. H.
,
Zurakowski
,
D.
,
Zilkens
,
C.
,
Burstein
,
D.
,
Gray
,
M. L.
, and
Kim
,
Y. J.
,
2009
, “
Radiographic and Patient Factors Associated With Pre-radiographic Osteoarthritis in Hip Dysplasia
,”
J. Bone Jt. Surg.
,
91
(
5
), pp.
1120
1129
.10.2106/JBJS.G.00144
52.
Klaue
,
K.
,
Durnin
,
C. W.
, and
Ganz
,
R.
,
1991
, “
The Acetabular Rim Syndrome. A Clinical Presentation of Dysplasia of the Hip
,”
J. Bone Jt. Surg.
Br.,
73
(
3
), pp.
423
429
.
53.
Lau
,
E. M.
,
Lin
,
F.
,
Lam
,
D.
,
Silman
,
A.
, and
Croft
,
P.
,
1995
, “
Hip Osteoarthritis and Dysplasia in Chinese Men
,”
Ann. Rheum. Dis.
,
54
(
12
), pp.
965
969
.10.1136/ard.54.12.965
54.
McWilliams
,
D. F.
,
Doherty
,
S. A.
,
Jenkins
,
W. D.
,
Maciewicz
,
R. A.
,
Muir
,
K. R.
,
Zhang
,
W.
, and
Doherty
,
M.
,
2010
, “
Mild Acetabular Dysplasia and Risk of Osteoarthritis of the Hip: A Case Control Study
,”
Ann. Rheum. Dis.
,
69
(
10
), pp.
1774
1778
.10.1136/ard.2009.127076
55.
Murphy
,
S. B.
,
Ganz
,
R.
, and
Muller
,
M. E.
,
1995
, “
The Prognosis in Untreated Dysplasia of the Hip. A Study of Radiographic Factors That Predict the Outcome
,”
J. Bone Jt. Surg.
,
77
(
7
), pp.
985
989
.
56.
Murray
,
R. O.
,
1965
, “
The Aetiology of Primary Osteoarthritis of the Hip
,”
Br. J. Radiol.
,
38
(
455
), pp.
810
824
.10.1259/0007-1285-38-455-810
57.
Solomon
,
L.
,
1976
, “
Patterns of Osteoarthritis of the Hip
,”
J. Bone Jt. Surg. Br.
,
58
(
2
), pp.
176
183
.
58.
Sulsky
,
S. I.
,
Carlton
,
L.
,
Bochmann
,
F.
,
Ellegast
,
R.
,
Glitsch
,
U.
,
Hartmann
,
B.
,
Pallapies
,
D.
,
Seidel
,
D.
, and
Sun
,
Y.
,
2012
, “
Epidemiological Evidence for Work Load as a Risk Factor for Osteoarthritis of the Hip: A Systematic Review
,”
PLoS ONE
,
7
(
2
), p.
e31521
.10.1371/journal.pone.0031521
59.
Cameron
,
M. L.
,
Kocher
,
M. S.
,
Briggs
,
K. K.
,
Horan
,
M. P.
, and
Hawkins
,
R. J.
,
2003
, “
The Prevalence of Glenohumeral Osteoarthrosis in Unstable Shoulders
,”
Am. J. Sports Med.
,
31
(
1
), pp.
53
55
.
60.
Oh
,
J. H.
,
Chung
,
S. W.
,
Oh
,
C. H.
,
Kim
,
S. H.
,
Park
,
S. J.
,
Kim
,
K. W.
,
Park
,
J. H.
,
Lee
,
S. B.
, and
Lee
,
J. J.
,
2011
, “
The Prevalence of Shoulder Osteoarthritis in the Elderly Korean Population: Association With Risk Factors and Function
,”
J. Shoulder Elbow Surg.
,
20
(
5
), pp.
756
763
.10.1016/j.jse.2011.01.021
61.
Bischof
,
J. E.
,
Spritzer
,
C. E.
,
Caputo
,
A. M.
,
Easley
,
M. E.
,
DeOrio
,
J. K.
,
Nunley
,
J. A.
, II
, and
DeFrate
,
L. E.
,
2010
, “
In Vivo Cartilage Contact Strains in Patients With Lateral Ankle Instability
,”
J. Biomech.
,
43
(
13
), pp.
2561
2566
.10.1016/j.jbiomech.2010.05.013
62.
Goreham-Voss
,
C. M.
,
McKinley
,
T. O.
, and
Brown
,
T. D.
,
2007
, “
A Finite Element Exploration of Cartilage Stress Near an Articular Incongruity During Unstable Motion
,”
J. Biomech.
,
40
(
15
), pp.
3438
3447
.10.1016/j.jbiomech.2007.05.023
63.
Hughes
,
T. J. R.
, and
Liu
,
W. K.
,
1981
, “
Nonlinear Finite Element Analysis of Shells: Part I—Three-Dimensional Shells
,”
Comput. Methods Appl. Mech. Eng.
,
26
(
3
), pp.
331
362
.10.1016/0045-7825(81)90121-3
64.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.10.1115/1.1611512
65.
Puso
,
M. A.
,
2000
, “
A Highly Efficient Enhanced Assumed Strain Physically Stabilized Hexahedral Element
,”
Int. J. Numer. Methods Eng.
,
49
(
8
), pp.
1029
1064
.10.1002/1097-0207(20001120)49:8<1029::AID-NME990>3.0.CO;2-3
66.
Puso
,
M. A.
,
2004
, “
A 3D Mortar Method for Solid Mechanics
,”
Int. J. Numer. Methods Eng.
,
59
(
3
), pp.
315
336
.10.1002/nme.865
67.
Puso
,
M. A.
, and
Laursen
,
T. A.
,
2004
, “
A Mortar Segment-to-Segment Contact Method for Large Deformation Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
601
629
.10.1016/j.cma.2003.10.010
68.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1991
, “
Quasi-incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
3
), pp.
273
310
.10.1016/0045-7825(91)90100-K
69.
Un
,
K.
, and
Spilker
,
R. L.
,
2006
, “
A Penetration-Based Finite Element Method for Hyperelastic 3D Biphasic Tissues in Contact. Part II: Finite Element Simulations
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
934
942
.10.1115/1.2354203
70.
Un
,
K.
, and
Spilker
,
R. L.
,
2006
, “
A Penetration-Based Finite Element Method for Hyperelastic 3D Biphasic Tissues in Contact: Part 1—Derivation of Contact Boundary Conditions
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
124
130
.10.1115/1.2133769
71.
Veronda
,
D. R.
, and
Westmann
,
R. A.
,
1970
, “
Mechanical Characterization of Skin-Finite Deformations
,”
J. Biomech.
,
3
(
1
), pp.
111
124
.10.1016/0021-9290(70)90055-2
72.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
1–2
), pp.
107
128
.10.1016/0045-7825(96)01035-3
73.
Segal
,
N. A.
,
Anderson
,
D. D.
,
Iyer
,
K. S.
,
Baker
,
J.
,
Torner
,
J. C.
,
Lynch
,
J. A.
,
Felson
,
D. T.
,
Lewis
,
C. E.
, and
Brown
,
T. D.
,
2009
, “
Baseline Articular Contact Stress Levels Predict Incident Symptomatic Knee Osteoarthritis Development in the MOST Cohort
,”
J. Orthop. Res.
,
27
(
12
), pp.
1562
1568
.10.1002/jor.20936
74.
Brown
,
T. D.
, and
DiGioia
,
A. M.
, III
,
1984
, “
A Contact-Coupled Finite Element Analysis of the Natural Adult Hip
,”
J. Biomech.
,
17
(
6
), pp.
437
448
.10.1016/0021-9290(84)90035-6
75.
Cohen
,
Z. A.
,
Henry
,
J. H.
,
McCarthy
,
D. M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2003
, “
Computer Simulations of Patellofemoral Joint Surgery. Patient-Specific Models for Tuberosity Transfer
,”
Am. J. Sports Med.
,
31
(
1
), pp.
87
98
. Available at: http://ajs.sagepub.com/content/31/1/87.short
76.
Tsumura
,
H.
,
Kaku
,
N.
,
Ikeda
,
S.
, and
Torisu
,
T.
,
2005
, “
A Computer Simulation of Rotational Acetabular Osteotomy for Dysplastic Hip Joint: Does the Optimal Transposition of the Acetabular Fragment Exist?
,”
J. Orthop. Sci.
,
10
(
2
), pp.
145
151
.10.1007/s00776-004-0866-4
77.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
,
Palanca
,
D.
, and
Doblare
,
M.
,
2006
, “
Influence of the Tunnel Angle in ACL Reconstructions on the Biomechanics of the Knee Joint
,”
Clin. Biomech.
,
21
(
5
), pp.
508
516
.10.1016/j.clinbiomech.2005.12.013
78.
Besier
,
T. F.
,
Gold
,
G. E.
,
Delp
,
S. L.
,
Fredericson
,
M.
, and
Beaupre
,
G. S.
,
2008
, “
The Influence of Femoral Internal and External Rotation on Cartilage Stresses Within the Patellofemoral Joint
,”
J. Orthop. Res.
,
26
(
12
), pp.
1627
1635
.10.1002/jor.20663
79.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
80.
Halloran
,
J. P.
,
Sibole
,
S.
,
van Donkelaar
,
C. C.
,
van Turnhout
,
M. C.
,
Oomens
,
C. W.
,
Weiss
,
J. A.
,
Guilak
,
F.
, and
Erdemir
,
A.
,
2012
, “
Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models
,”
Ann. Biomed. Eng.
,
40
(
11
), pp.
2456
2474
.10.1007/s10439-012-0598-0
81.
Li
,
G.
,
Sakamoto
,
M.
, and
Chao
,
E. Y.
,
1997
, “
A Comparison of Different Methods in Predicting Static Pressure Distribution in Articulating Joints
,”
J. Biomech.
,
30
(
6
), pp.
635
638
.10.1016/S0021-9290(97)00009-2
82.
Akbar
,
M.
,
Farahmand
,
F.
,
Jafari
,
A.
, and
Foumani
,
M. S.
,
2012
, “
A Detailed and Validated Three Dimensional Dynamic Model of the Patellofemoral Joint
,”
ASME J. Biomech. Eng.
,
134
(
4
), p.
041005
.10.1115/1.4006403
83.
Abraham
,
C. L.
,
Maas
,
S. A.
,
Weiss
,
J. A.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Anderson
,
A. E.
,
2012
, “
An Enhanced Discrete Element Analysis Method for Predicting Hip Contact Stresses
,”
International Symposium of Computer Methods in Biomechanics and Biomedical Engineering
,
Berlin, Germany
.
84.
Anderson
,
D. D.
,
Iyer
,
K. S.
,
Segal
,
N. A.
,
Lynch
,
J. A.
, and
Brown
,
T. D.
,
2010
, “
Implementation of Discrete Element Analysis for Subject-Specific, Population-Wide Investigations of Habitual Contact Stress Exposure
,”
J. Appl. Biomech.
,
26
(
2
), pp.
215
223
.
85.
Segal
,
N. A.
,
Kern
,
A. M.
,
Anderson
,
D. D.
,
Niu
,
J.
,
Lynch
,
J.
,
Guermazi
,
A.
,
Torner
,
J. C.
,
Brown
,
T. D.
, and
Nevitt
,
M.
,
2012
, “
Elevated Tibiofemoral Articular Contact Stress Predicts Risk for Bone Marrow Lesions and Cartilage Damage at 30 Months
,”
Osteoarthritis Cartilage
,
20
(
10
), pp.
1120
1126
.10.1016/j.joca.2012.05.013
86.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Brekelmans
,
W. A. M.
,
2010
, “
Multi-scale Computational Homogenization: Trends and Challenges
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2175
2182
.10.1016/j.cam.2009.08.077
87.
Yuan
,
Z.
, and
Fish
,
J.
,
2008
, “
Toward Realization of Computational Homogenization in Practice
,”
Int. J. Numer. Methods Eng.
,
73
(
3
), pp.
361
380
.10.1002/nme.2074
88.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
(
12
), pp.
1663
1673
.10.1016/S0021-9290(00)00105-6
89.
Kim
,
E.
,
Guilak
,
F.
, and
Haider
,
M. A.
,
2008
, “
The Dynamic Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions Under Cyclic Compressive Loading
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061009
.10.1115/1.2978991
90.
Kim
,
E.
,
Guilak
,
F.
, and
Haider
,
M. A.
,
2010
, “
An Axisymmetric Boundary Element Model for Determination of Articular Cartilage Pericellular Matrix Properties In Situ via Inverse Analysis of Chondron Deformation
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
031011
.10.1115/1.4000938
91.
Sibole
,
S. C.
, and
Erdemir
,
A.
,
2012
, “
Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations
,”
PLoS ONE
,
7
(
5
), p.
e37538
.10.1371/journal.pone.0037538
92.
Lu
,
X. L.
, and
Mow
,
V. C.
,
2008
, “
Biomechanics of Articular Cartilage and Determination of Material Properties
,”
Med. Sci. Sports Exercise
,
40
(
2
), pp.
193
199
.10.1249/mss.0b013e31815cb1fc
93.
Stops
,
A.
,
Wilcox
,
R.
, and
Jin
,
Z.
,
2012
, “
Computational Modelling of the Natural Hip: A Review of Finite Element and Multibody Simulations
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
9
), pp.
963
979
.10.1080/10255842.2011.567983
94.
Ateshian
,
G. A.
,
Albro
,
M. B.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2011
, “
Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081005
.10.1115/1.4004810
95.
Maas
,
S.
,
Rawlins
,
D.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2012
,
FEBio: Finite Elements for Biomechanics User's Manual
. Available at http://help.mrl.sci.utah.edu/help/index.jsp
96.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2012
, “
Solute Transport Across a Contact Interface in Deformable Porous Media
,”
J. Biomech.
,
45
(
6
), pp.
1023
1027
.10.1016/j.jbiomech.2012.01.003
97.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2010
, “
Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061006
.10.1115/1.4001034
98.
Taylor
,
Z. A.
, and
Miller
,
K.
,
2006
, “
Constitutive Modeling of Cartilaginous Tissues: A Review
,”
J. Appl. Biomech.
,
22
(
3
), pp.
212
229
.
99.
Federico
,
S.
,
Grillo
,
A.
,
La Rosa
,
G.
,
Giaquinta
,
G.
, and
Herzog
,
W.
,
2005
, “
A Transversely Isotropic, Transversely Homogeneous Microstructural-Statistical Model of Articular Cartilage
,”
J. Biomech.
,
38
(
10
), pp.
2008
2018
.10.1016/j.jbiomech.2004.09.020
100.
Buckley
,
M. R.
,
Gleghorn
,
J. P.
,
Bonassar
,
L. J.
, and
Cohen
,
I.
,
2008
, “
Mapping the Depth Dependence of Shear Properties in Articular Cartilage
,”
J. Biomech.
,
41
(
11
), pp.
2430
2437
.10.1016/j.jbiomech.2008.05.021
101.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
,
2001
, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
(
1
), pp.
1
12
.10.1016/S0021-9290(00)00170-6
102.
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Venn
,
M. F.
,
1980
, “
Further Studies on the Composition of Human Femoral Head Cartilage
,”
Ann. Rheum. Dis.
,
39
(
5
), pp.
514
523
.10.1136/ard.39.5.514
103.
Mow
,
V. C.
, and
Guo
,
X. E.
,
2002
, “
Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies
,”
Ann. Rev. Biomed. Eng.
,
4
(
1
), pp.
175
209
.10.1146/annurev.bioeng.4.110701.120309
104.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
(
4
), pp.
499
506
.10.1002/jor.1100150404
105.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
(
4–5
), pp.
581
592
.10.1016/0021-9290(93)90019-B
106.
Athanasiou
,
K. A.
,
Agarwal
,
A.
, and
Dzida
,
F. J.
,
1994
, “
Comparative Study of the Intrinsic Mechanical Properties of the Human Acetabular and Femoral Head Cartilage
,”
J. Orthop. Res.
,
12
(
3
), pp.
340
349
.10.1002/jor.1100120306
107.
Athanasiou
,
K. A.
,
Agarwal
,
A.
,
Muffoletto
,
A.
,
Dzida
,
F. J.
,
Constantinides
,
G.
, and
Clem
,
M.
,
1995
, “
Biomechanical Properties of Hip Cartilage in Experimental Animal Models
,”
Clin. Orthop. Relat. Res.
, (
316
), pp.
254
266
.
108.
Demarteau
,
O.
,
Pillet
,
L.
,
Inaebnit
,
A.
,
Borens
,
O.
, and
Quinn
,
T. M.
,
2006
, “
Biomechanical Characterization and In Vitro Mechanical Injury of Elderly Human Femoral Head Cartilage: Comparison to Adult Bovine Humeral Head Cartilage
,”
Osteoarthritis Cartilage
,
14
(
6
), pp.
589
596
.10.1016/j.joca.2005.12.011
109.
Huang
,
C. Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
2005
, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
,
38
(
4
), pp.
799
809
.10.1016/j.jbiomech.2004.05.006
110.
Shepherd
,
D. E.
, and
Seedhom
,
B. B.
,
1999
, “
The ‘Instantaneous’ Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb
,”
Rheumatology
,
38
(
2
), pp.
124
132
.10.1093/rheumatology/38.2.124
111.
Treppo
,
S.
,
Koepp
,
H.
,
Quan
,
E. C.
,
Cole
,
A. A.
,
Kuettner
,
K. E.
, and
Grodzinsky
,
A. J.
,
2000
, “
Comparison of Biomechanical and Biochemical Properties of Cartilage From Human Knee and Ankle Pairs
,”
J. Orthop. Res.
,
18
(
5
), pp.
739
748
.10.1002/jor.1100180510
112.
Li
,
L.
,
Shirazi-Adl
,
A.
, and
Buschmann
,
M. D.
,
2003
, “
Investigation of Mechanical Behavior of Articular Cartilage by Fibril Reinforced Poroelastic Models
,”
Biorheology
,
40
(
1–3
), pp.
227
233
.
113.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
2000
, “
A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression
,”
J. Biomech.
,
33
(
12
), pp.
1533
1541
.10.1016/S0021-9290(00)00153-6
114.
Woo
,
S. L.
,
Akeson
,
W. H.
, and
Jemmott
,
G. F.
,
1976
, “
Measurements of Nonhomogeneous, Directional Mechanical Properties of Articular Cartilage in Tension
,”
J. Biomech.
,
9
(
12
), pp.
785
791
.10.1016/0021-9290(76)90186-X
115.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. K.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I—Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
191
197
.10.1115/1.1351890
116.
Huang
,
C. Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2003
, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
84
93
.10.1115/1.1531656
117.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage–the Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
123
130
.10.1115/1.3138591
118.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
119.
Setton
,
L. A.
,
Tohyama
,
H.
, and
Mow
,
V. C.
,
1998
, “
Swelling and Curling Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
355
361
.10.1115/1.2798002
120.
Abazari
,
A.
,
Elliott
,
J. A.
,
McGann
,
L. E.
, and
Thompson
,
R. B.
,
2012
, “
MR Spectroscopy Measurement of the Diffusion of Dimethyl Sulfoxide in Articular Cartilage and Comparison to Theoretical Predictions
,”
Osteoarthritis Cartilage
,
20
(
9
), pp.
1004
1010
.10.1016/j.joca.2012.04.023
121.
Burstein
,
D.
,
Gray
,
M. L.
,
Hartman
,
A. L.
,
Gipe
,
R.
, and
Foy
,
B. D.
,
1993
, “
Diffusion of Small Solutes in Cartilage as Measured by Nuclear Magnetic Resonance (NMR) Spectroscopy and Imaging
,”
J. Orthop. Res.
,
11
(
4
), pp.
465
478
.10.1002/jor.1100110402
122.
Evans
,
R. C.
, and
Quinn
,
T. M.
,
2005
, “
Solute Diffusivity Correlates With Mechanical Properties and Matrix Density of Compressed Articular Cartilage
,”
Arch. Biochem. Biophys.
,
442
(
1
), pp.
1
10
.10.1016/j.abb.2005.07.025
123.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
,
2000
, “
Static Compression is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
,
384
(
2
), pp.
327
334
.10.1006/abbi.2000.2077
124.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.10.1115/1.1324669
125.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
410
417
.10.1115/1.1392316
126.
Pierce
,
D. M.
,
Trobin
,
W.
,
Trattnig
,
S.
,
Bischof
,
H.
, and
Holzapfel
,
G. A.
,
2009
, “
A Phenomenological Approach Toward Patient-Specific Computational Modeling of Articular Cartilage Including Collagen Fiber Tracking
,”
ASME J. Biomech. Eng.
,
131
(
9
), p.
091006
.10.1115/1.3148471
127.
Herberhold
,
C.
,
Faber
,
S.
,
Stammberger
,
T.
,
Steinlechner
,
M.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1999
, “
In Situ Measurement of Articular Cartilage Deformation in Intact Femoropatellar Joints Under Static Loading
,”
J. Biomech.
,
32
(
12
), pp.
1287
1295
.10.1016/S0021-9290(99)00130-X
128.
Holzapfel
,
G.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
West Sussex
.
129.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
405
412
.10.1115/1.2720918
130.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J. S.
,
2000
, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
,
33
(
9
), pp.
1049
1054
.10.1016/S0021-9290(00)00084-1
131.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051008
.10.1115/1.2953472
132.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.10.1080/10255840601160484
133.
Creamer
,
P.
, and
Hochberg
,
M. C.
,
1997
, “
Osteoarthritis
,”
Lancet
,
350
(
9076
), pp.
503
508
.10.1016/S0140-6736(97)07226-7
134.
Russell
,
M. E.
,
Shivanna
,
K. H.
,
Grosland
,
N. M.
, and
Pedersen
,
D. R.
,
2006
, “
Cartilage Contact Pressure Elevations in Dysplastic Hips: A Chronic Overload Model
,”
J. Orthop. Surg. Res.
,
1
, p.
6
.10.1186/1749-799X-1-6
135.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2003
, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
,
36
(
9
), pp.
1373
1379
.10.1016/S0021-9290(03)00069-1
136.
Ateshian
,
G. A.
,
2007
, “
Anisotropy of Fibrous Tissues in Relation to the Distribution of Tensed and Buckled Fibers
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
240
249
.10.1115/1.2486179
137.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
,
2009
, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.10.1115/1.3118773
138.
Seifzadeh
,
A.
,
Wang
,
J.
,
Oguamanam
,
D. C.
, and
Papini
,
M.
,
2011
, “
A Nonlinear Biphasic Fiber-Reinforced Porohyperviscoelastic Model of Articular Cartilage Incorporating Fiber Reorientation and Dispersion
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081004
.10.1115/1.4004832
139.
Saarakkala
,
S.
,
Laasanen
,
M. S.
,
Jurvelin
,
J. S.
,
Torronen
,
K.
,
Lammi
,
M. J.
,
Lappalainen
,
R.
, and
Toyras
,
J.
,
2003
, “
Ultrasound Indentation of Normal and Spontaneously Degenerated Bovine Articular Cartilage
,”
Osteoarthritis Cartilage
,
11
(
9
), pp.
697
705
.10.1016/S1063-4584(03)00154-7
140.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
141.
Keenan
,
K. E.
,
Pal
,
S.
,
Lindsey
,
D. P.
,
Besier
,
T. F.
, and
Beaupre
,
G. S.
, “
A Viscoelastic Constitutive Model Can Accurately Represent Entire Creep Indentation Tests of Human Patella Cartilage
,”
J. Appl. Biomech.
, (in press).
142.
Thomas
,
G. C.
,
Asanbaeva
,
A.
,
Vena
,
P.
,
Sah
,
R. L.
, and
Klisch
,
S. M.
,
2009
, “
A Nonlinear Constituent Based Viscoelastic Model for Articular Cartilage and Analysis of Tissue Remodeling Due to Altered Glycosaminoglycan-Collagen Interactions
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101002
.10.1115/1.3192139
143.
Park
,
S.
, and
Ateshian
,
G. A.
,
2006
, “
Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression, and Nonlinear Viscoelastic Modeling of the Tensile Response
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
623
630
.10.1115/1.2206201
144.
Li
,
L. P.
, and
Herzog
,
W.
,
2004
, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Theory and Numerical Formulation
,”
Biorheology
,
41
(
3–4
), pp.
181
194
.
145.
Li
,
L. P.
,
Herzog
,
W.
,
Korhonen
,
R. K.
, and
Jurvelin
,
J. S.
,
2005
, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Axial Tension Versus Compression
,”
Med. Eng. Phys.
,
27
(
1
), pp.
51
57
.10.1016/j.medengphy.2004.08.009
146.
Suh
,
J. K.
, and
Bai
,
S.
,
1998
, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
195
201
.10.1115/1.2798302
147.
Ateshian
,
G. A.
,
2009
, “
The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication
,”
J. Biomech.
,
42
(
9
), pp.
1163
1176
.10.1016/j.jbiomech.2009.04.040
148.
Bonnevie
,
E. D.
,
Baro
,
V. J.
,
Wang
,
L.
, and
Burris
,
D. L.
,
2012
, “
Fluid Load Support During Localized Indentation of Cartilage With a Spherical Probe
,”
J. Biomech.
,
45
(
6
), pp.
1036
1041
.10.1016/j.jbiomech.2011.12.019
149.
Krishnan
,
R.
,
Kopacz
,
M.
, and
Ateshian
,
G. A.
,
2004
, “
Experimental Verification of the Role of Interstitial Fluid Pressurization in Cartilage Lubrication
,”
J. Orthop. Res.
,
22
(
3
), pp.
565
570
.10.1016/j.orthres.2003.07.002
150.
O'Hara
,
B. P.
,
Urban
,
J. P.
, and
Maroudas
,
A.
,
1990
, “
Influence of Cyclic Loading on the Nutrition of Articular Cartilage
,”
Ann. Rheum. Dis.
,
49
(
7
), pp.
536
539
.10.1136/ard.49.7.536
151.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.10.1115/1.2798299
152.
Maas
,
S.
,
Rawlins
,
D.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2012
,
FEBio: Finite Elements for Biomechanics, Theory Manual
. Available at: http://help.mrl.sci.utah.edu/help/index.jsp
153.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.10.1016/0021-9290(90)90007-P
154.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
155.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
(
1–2
), pp.
111
123
.
156.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
,
1981
, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
103
(
2
), pp.
61
66
.10.1115/1.3138261
157.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
(
11–12
), pp.
1157
1164
.10.1016/S0021-9290(97)85606-0
158.
Holmes
,
M. H.
,
1986
, “
Finite Deformation of Soft Tissue: Analysis of a Mixture Model in Uni-Axial Compression
,”
ASME J. Biomech. Eng.
,
108
(
4
), pp.
372
381
.10.1115/1.3138633
159.
DiSilvestro
,
M. R.
, and
Suh
,
J. K.
,
2001
, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
,
34
(
4
), pp.
519
525
.10.1016/S0021-9290(00)00224-4
160.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
(
8
), pp.
793
802
.10.1016/S0020-7225(96)00119-X
161.
Ateshian
,
G. A.
,
Chahine
,
N. O.
,
Basalo
,
I. M.
, and
Hung
,
C. T.
,
2004
, “
The Correspondence Between Equilibrium Biphasic and Triphasic Material Properties in Mixture Models of Articular Cartilage
,”
J. Biomech.
,
37
(
3
), pp.
391
400
.10.1016/S0021-9290(03)00252-5
162.
Wilson
,
W.
,
van Donkelaar
,
C. C.
, and
Huyghe
,
J. M.
,
2005
, “
A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
158
165
.10.1115/1.1835361
163.
Sengers
,
B. G.
,
Oomens
,
C. W.
, and
Baaijens
,
F. P.
,
2004
, “
An Integrated Finite-Element Approach to Mechanics, Transport and Biosynthesis in Tissue Engineering
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
82
91
.10.1115/1.1645526
164.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
,
2000
, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
189
195
.10.1115/1.429641
165.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech.
,
14
(
9
), pp.
673
682
.10.1016/S0268-0033(99)00013-3
166.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
(
4
), pp.
491
496
.10.1115/1.2798019
167.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
657
662
.10.1115/1.2800871
168.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
198
200
.10.1115/1.1351887
169.
An
,
K. N.
,
Himeno
,
S.
,
Tsumura
,
H.
,
Kawai
,
T.
, and
Chao
,
E. Y.
,
1990
, “
Pressure Distribution on Articular Surfaces: Application to Joint Stability Evaluation
,”
J. Biomech.
,
23
(
10
), pp.
1013
1020
.10.1016/0021-9290(90)90316-U
170.
Menschik
,
F.
,
1997
, “
The Hip Joint as a Conchoid Shape
,”
J. Biomech.
,
30
(
9
), pp.
971
973
.10.1016/S0021-9290(97)00051-1
171.
Macirowski
,
T.
,
Tepic
,
S.
, and
Mann
,
R. W.
,
1994
, “
Cartilage Stresses in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
116
(
1
), pp.
10
18
.10.1115/1.2895693
172.
Gu
,
D. Y.
,
Hu
,
F.
,
Wei
,
J. H.
,
Dai
,
K. R.
, and
Chen
,
Y. Z.
,
2011
, “
Contributions of Non-Spherical Hip Joint Cartilage Surface to Hip Joint Contact Stress
,”
Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, pp.
8166
8169
.
173.
Soslowsky
,
L. J.
,
Flatow
,
E. L.
,
Bigliani
,
L. U.
, and
Mow
,
V. C.
,
1992
, “
Articular Geometry of the Glenohumeral Joint
,”
Clin. Orthop. Relat. Res.
, (
285
), pp.
181
190
.
174.
Huiskes
,
R.
,
Kremers
,
J.
,
de Lange
,
A.
,
Woltring
,
H. J.
,
Selvik
,
G.
, and
van Rens
,
T. J.
,
1985
, “
Analytical Stereophotogrammetric Determination of Three-Dimensional Knee-Joint Geometry
,”
J. Biomech.
,
18
(
8
), pp.
559
570
.10.1016/0021-9290(85)90011-9
175.
Cerveri
,
P.
,
Manzotti
,
A.
, and
Baroni
,
G.
, “
Patient-Specific Acetabular Shape Modelling: Comparison Among Sphere, Ellipsoid and Conchoid Parameterisations
,”
Comput. Methods Biomech. Biomed. Eng.
pp.
1
8
.
176.
Genda
,
E.
,
Iwasaki
,
N.
,
Li
,
G.
,
MacWilliams
,
B. A.
,
Barrance
,
P. J.
, and
Chao
,
E. Y.
,
2001
, “
Normal Hip Joint Contact Pressure Distribution in Single-Leg Standing–Effect of Gender and Anatomic Parameters
,”
J. Biomech.
,
34
(
7
), pp.
895
905
.10.1016/S0021-9290(01)00041-0
177.
Yoshida
,
H.
,
Faust
,
A.
,
Wilckens
,
J.
,
Kitagawa
,
M.
,
Fetto
,
J.
, and
Chao
,
E. Y.
,
2006
, “
Three-Dimensional Dynamic Hip Contact Area and Pressure Distribution During Activities of Daily Living
,”
J. Biomech.
,
39
(
11
), pp.
1996
2004
.10.1016/j.jbiomech.2005.06.026
178.
Afoke
,
N. Y.
,
Byers
,
P. D.
, and
Hutton
,
W. C.
,
1987
, “
Contact Pressures in the Human Hip Joint
,”
J. Bone Jt. Surg.
,
69
(
4
), pp.
536
541
.
179.
Brown
,
T. D.
, and
Shaw
,
D. T.
,
1983
, “
In Vitro Contact Stress Distributions in the Natural Human Hip
,”
J. Biomech.
,
16
(
6
), pp.
373
384
.10.1016/0021-9290(83)90071-4
180.
von Eisenhart
,
R.
,
Adam
,
C.
,
Steinlechner
,
M.
,
Muller-Gerbl
,
M.
, and
Eckstein
,
F.
,
1999
, “
Quantitative Determination of Joint Incongruity and Pressure Distribution During Simulated Gait and Cartilage Thickness in the Human Hip Joint
,”
J. Orthop. Res.
,
17
(
4
), pp.
532
539
.10.1002/jor.1100170411
181.
von Eisenhart-Rothe
,
R.
,
Eckstein
,
F.
,
Muller-Gerbl
,
M.
,
Landgraf
,
J.
,
Rock
,
C.
, and
Putz
,
R.
,
1997
, “
Direct Comparison of Contact Areas, Contact Stress and Subchondral Mineralization in Human Hip Joint Specimens
,”
Anat. Embryol. (Berl)
,
195
(
3
), pp.
279
288
.10.1007/s004290050047
182.
Genda
,
E.
,
Konishi
,
N.
,
Hasegawa
,
Y.
, and
Miura
,
T.
,
1995
, “
A Computer Simulation Study of Normal and Abnormal Hip Joint Contact Pressure
,”
Arch. Orthop. Trauma Surg.
,
114
(
4
), pp.
202
206
.10.1007/BF00444263
183.
Ateshian
,
G. A.
, and
Eckstein
,
F.
,
2005
, “
Quantitative Anatomy and Imaging of Diarthrodial Joint Articular Layers
,”
Basic Orthopaedic Biomechanics and Mecho-Biology
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott Williams & Wilkins
,
Philadelphia
.
184.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2010
, “
Effects of Idealized Joint Geometry on Finite Element Predictions of Cartilage Contact Stresses in the Hip
,”
J. Biomech.
,
43
(
7
), pp.
1351
1357
.10.1016/j.jbiomech.2010.01.010
185.
Harris
,
M. D.
,
Anderson
,
A. E.
,
Henak
,
C. R.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2012
, “
Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips
,”
J. Orthop. Res.
,
30
(
7
), pp.
1133
1139
.10.1002/jor.22040
186.
Henak
,
C. R.
,
Ellis
,
B. J.
,
Harris
,
M. D.
,
Anderson
,
A. E.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2011
, “
Role of the Acetabular Labrum in Load Support Across the Hip Joint
,”
J. Biomech.
,
44
(
12
), pp.
2201
2206
.10.1016/j.jbiomech.2011.06.011
187.
Allen
,
B. C.
,
Peters
,
C. L.
,
Brown
,
N. A.
, and
Anderson
,
A. E.
,
2010
, “
Acetabular Cartilage Thickness: Accuracy of Three-Dimensional Reconstructions From Multidetector CT Arthrograms in a Cadaver Study
,”
Radiology
,
255
(
2
), pp.
544
552
.10.1148/radiol.10081876
188.
Eckstein
,
F.
,
Charles
,
H. C.
,
Buck
,
R. J.
,
Kraus
,
V. B.
,
Remmers
,
A. E.
,
Hudelmaier
,
M.
,
Wirth
,
W.
, and
Evelhoch
,
J. L.
,
2005
, “
Accuracy and Precision of Quantitative Assessment of Cartilage Morphology by Magnetic Resonance Imaging at 3.0T
,”
Arthritis Rheum.
,
52
(
10
), pp.
3132
3136
.10.1002/art.21348
189.
El-Khoury
,
G. Y.
,
Alliman
,
K. J.
,
Lundberg
,
H. J.
,
Rudert
,
M. J.
,
Brown
,
T. D.
, and
Saltzman
,
C. L.
,
2004
, “
Cartilage Thickness in Cadaveric Ankles: Measurement With Double-Contrast Multi-Detector Row CT Arthrography versus MR Imaging
,”
Radiology
,
233
(
3
), pp.
768
773
.10.1148/radiol.2333031921
190.
Wyler
,
A.
,
Bousson
,
V.
,
Bergot
,
C.
,
Polivka
,
M.
,
Leveque
,
E.
,
Vicaut
,
E.
, and
Laredo
,
J. D.
,
2009
, “
Comparison of MR-Arthrography and CT-Arthrography in Hyaline Cartilage-Thickness Measurement in Radiographically Normal Cadaver Hips With Anatomy as Gold Standard
,”
Osteoarthritis Cartilage
,
17
(
1
), pp.
19
25
.10.1016/j.joca.2008.05.015
191.
Bachtar
,
F.
,
Chen
,
X.
, and
Hisada
,
T.
,
2006
, “
Finite Element Contact Analysis of the Hip Joint
,”
Med. Biol. Eng. Comput.
,
44
(
8
), pp.
643
651
.10.1007/s11517-006-0074-9
192.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
193.
Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.10.1115/1.1470171
194.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2003
, “
How the Stiffness of Meniscal Attachments and Meniscal Material Properties Affect Tibio-Femoral Contact Pressure Computed Using a Validated Finite Element Model of the Human Knee Joint
,”
J. Biomech.
,
36
(
1
), pp.
19
34
.10.1016/S0021-9290(02)00305-6
195.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2004
, “
The Sensitivity of Tibiofemoral Contact Pressure to the Size and Shape of the Lateral and Medial Menisci
,”
J. Orthop. Res.
,
22
(
4
), pp.
807
814
.10.1016/j.orthres.2003.12.010
196.
McErlain
,
D. D.
,
Milner
,
J. S.
,
Ivanov
,
T. G.
,
Jencikova-Celerin
,
L.
,
Pollmann
,
S. I.
, and
Holdsworth
,
D. W.
,
2011
, “
Subchondral Cysts Create Increased Intra-osseous Stress in Early Knee OA: A Finite Element Analysis Using Simulated Lesions
,”
Bone
,
48
(
3
), pp.
639
646
.10.1016/j.bone.2010.11.010
197.
Papaioannou
,
G.
,
Demetropoulos
,
C. K.
, and
King
,
Y. H.
,
2010
, “
Predicting the Effects of Knee Focal Articular Surface Injury With a Patient-Specific Finite Element Model
,”
The Knee
,
17
(
1
), pp.
61
68
.10.1016/j.knee.2009.05.001
198.
Papaioannou
,
G.
,
Nianios
,
G.
,
Mitrogiannis
,
C.
,
Fyhrie
,
D.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2008
, “
Patient-Specific Knee Joint Finite Element Model Validation With High-Accuracy Kinematics From Biplane Dynamic Roentgen Stereogrammetric Analysis
,”
J. Biomech.
,
41
(
12
), pp.
2633
2638
.10.1016/j.jbiomech.2008.06.027
199.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
200.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2007
, “
Effect of the Size and Location of Osteochondral Defects in Degenerative Arthritis. A Finite Element Simulation
,”
Comput. Biol. Med.
,
37
(
3
), pp.
376
387
.10.1016/j.compbiomed.2006.04.004
201.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
,
Palanca
,
D.
, and
Doblare
,
M.
,
2005
, “
Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics
,”
Clin. Biomech.
,
20
(
5
), pp.
498
507
.10.1016/j.clinbiomech.2005.01.009
202.
Pena
,
E.
,
Martinez
,
M. A.
,
Calvo
,
B.
,
Palanca
,
D.
, and
Doblare
,
M.
,
2005
, “
A Finite Element Simulation of the Effect of Graft Stiffness and Graft Tensioning in ACL Reconstruction
,”
Clin. Biomech.
,
20
(
6
), pp.
636
644
.10.1016/j.clinbiomech.2004.07.014
203.
Buchler
,
P.
,
Ramaniraka
,
N. A.
,
Rakotomanana
,
L. R.
,
Iannotti
,
J. P.
, and
Farron
,
A.
,
2002
, “
A Finite Element Model of the Shoulder: Application to the Comparison of Normal and Osteoarthritic Joints
,”
Clin. Biomech.
,
17
(
9–10
), pp.
630
639
.10.1016/S0268-0033(02)00106-7
204.
Favre
,
P.
,
Senteler
,
M.
,
Hipp
,
J.
,
Scherrer
,
S.
,
Gerber
,
C.
, and
Snedeker
,
J. G.
,
2012
, “
An Integrated Model of Active Glenohumeral Stability
,”
J. Biomech.
,
45
(
13
), pp.
2248
2255
.10.1016/j.jbiomech.2012.06.010
205.
Gatti
,
C. J.
,
Maratt
,
J. D.
,
Palmer
,
M. L.
,
Hughes
,
R. E.
, and
Carpenter
,
J. E.
,
2010
, “
Development and Validation of a Finite Element Model of the Superior Glenoid Labrum
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3766
3776
.10.1007/s10439-010-0105-4
206.
Anderson
,
D. D.
,
Goldsworthy
,
J. K.
,
Li
,
W.
,
James Rudert
,
M.
,
Tochigi
,
Y.
, and
Brown
,
T. D.
,
2007
, “
Physical Validation of a Patient-Specific Contact Finite Element Model of the Ankle
,”
J. Biomech.
,
40
(
8
), pp.
1662
1669
.10.1016/j.jbiomech.2007.01.024
207.
Anderson
,
D. D.
,
Goldsworthy
,
J. K.
,
Shivanna
,
K.
,
Grosland
,
N. M.
,
Pedersen
,
D. R.
,
Thomas
,
T. P.
,
Tochigi
,
Y.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
2006
, “
Intra-articular Contact Stress Distributions at the Ankle Throughout Stance Phase-Patient-Specific Finite Element Analysis as a Metric of Degeneration Propensity
,”
Biomech. Model. Mechanobiol.
,
5
(
2–3
), pp.
82
89
.10.1007/s10237-006-0025-2
208.
Li
,
W.
,
Anderson
,
D. D.
,
Goldsworthy
,
J. K.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
2008
, “
Patient-Specific Finite Element Analysis of Chronic Contact Stress Exposure After Intraarticular Fracture of the Tibial Plafond
,”
J. Orthop. Res.
,
26
(
8
), pp.
1039
1045
.10.1002/jor.20642
209.
Prevrhal
,
S.
,
Engelke
,
K.
, and
Kalender
,
W. A.
,
1999
, “
Accuracy Limits for the Determination of Cortical Width and Density: The Influence of Object Size and CT Imaging Parameters
,”
Phys. Med. Biol.
,
44
(
3
), pp.
751
764
.10.1088/0031-9155/44/3/017
210.
Prevrhal
,
S.
,
Fox
,
J. C.
,
Shepherd
,
J. A.
, and
Genant
,
H. K.
,
2003
, “
Accuracy of CT-Based Thickness Measurement of Thin Structures: Modeling of Limited Spatial Resolution in All Three Dimensions
,”
Med. Phys.
,
30
(
1
), pp.
1
8
.10.1118/1.1521940
211.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
,
2005
, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
364
373
.10.1115/1.1894148
212.
Llopis, E., Cerezal, L., Kassarjian, A., Higueras, V., and Fernandez, E., 2008, “Direct MR arthrography of the hip with leg traction: feasibility for assessing articular cartilage,” AJR, Am. J. Roentgenol., 190(4), pp. 1124–1128.
213.
Buckwalter
,
K. A.
,
Rydberg
,
J.
,
Kopecky
,
K. K.
,
Crow
,
K.
, and
Yang
,
E. L.
,
2001
, “
Musculoskeletal Imaging With Multislice CT
,”
AJR, Am. J. Roentgenol.
,
176
(
4
), pp.
979
986
.
214.
Wang
,
G.
, and
Vannier
,
M. W.
,
1994
, “
Stair-Step Artifacts in Three-Dimensional Helical CT: An Experimental Study
,”
Radiology
,
191
(
1
), pp.
79
83
.
215.
Jun
,
B. R.
,
Yong
,
H. S.
,
Kang
,
E. Y.
,
Woo
,
O. H.
, and
Choi
,
E. J.
,
2012
, “
64-Slice Coronary Computed Tomography Angiography Using Low Tube Voltage of 80 kV in Subjects With Normal Body Mass Indices: Comparative Study Using 120 kV
,”
Acta Radiol.
,
53
(
10
), pp.
1099
1106
.
216.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Cartilage Thickness: Factors Influencing Multidetector CT Measurements in a Phantom Study
,”
Radiology
,
246
(
1
), pp.
133
141
.10.1148/radiol.2462070082
217.
Czerny
,
C.
,
Hofmann
,
S.
,
Neuhold
,
A.
,
Tschauner
,
C.
,
Engel
,
A.
,
Recht
,
M. P.
, and
Kramer
,
J.
,
1996
, “
Lesions of the Acetabular Labrum: Accuracy of MR Imaging and MR Arthrography in Detection and Staging
,”
Radiology
,
200
(
1
), pp.
225
230
.
218.
Petersilge
,
C. A.
,
2001
, “
MR Arthrography for Evaluation of the Acetabular Labrum
,”
Skeletal Radiol.
,
30
(
8
), pp.
423
430
.10.1007/s002560100386
219.
Petersilge
,
C. A.
,
Haque
,
M. A.
,
Petersilge
,
W. J.
,
Lewin
,
J. S.
,
Lieberman
,
J. M.
, and
Buly
,
R.
,
1996
, “
Acetabular Labral Tears: Evaluation With MR Arthrography
,”
Radiology
,
200
(
1
), pp.
231
235
.
220.
Steinbach
,
L. S.
,
Palmer
,
W. E.
, and
Schweitzer
,
M. E.
,
2002
, “
Special Focus Session. MR Arthrography
,”
Radiographics
,
22
(
5
), pp.
1223
1246
.
221.
Mononen
,
M. E.
,
Mikkola
,
M. T.
,
Julkunen
,
P.
,
Ojala
,
R.
,
Nieminen
,
M. T.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2012
, “
Effect of Superficial Collagen Patterns and Fibrillation of Femoral Articular Cartilage on Knee Joint Mechanics-A 3D Finite Element Analysis
,”
J. Biomech.
,
45
(
3
), pp.
579
587
.10.1016/j.jbiomech.2011.11.003
222.
Gold
,
G. E.
,
Chen
,
C. A.
,
Koo
,
S.
,
Hargreaves
,
B. A.
, and
Bangerter
,
N. K.
,
2009
, “
Recent Advances in MRI of Articular Cartilage
,”
AJR, Am. J. Roentgenol.
,
193
(
3
), pp.
628
638
.10.2214/AJR.09.3042
223.
Gold
,
S. L.
,
Burge
,
A. J.
, and
Potter
,
H. G.
,
2012
, “
MRI of Hip Cartilage: Joint Morphology, Structure, and Composition
,”
Clin. Orthop. Relat. Res.
,
470
(
12
), pp.
3321
3331
.10.1007/s11999-012-2403-7
224.
Potter
,
H. G.
,
Black
,
B. R.
, and
Chong le
,
R.
,
2009
, “
New Techniques in Articular Cartilage Imaging
,”
Clin. Sports Med.
,
28
(
1
), pp.
77
94
.10.1016/j.csm.2008.08.004
225.
Potter
,
H. G.
, and
Schachar
,
J.
,
2010
, “
High Resolution Noncontrast MRI of the Hip
,”
J. Magn. Reson. Imaging
,
31
(
2
), pp.
268
278
.10.1002/jmri.22025
226.
Recht
,
M. P.
,
Goodwin
,
D. W.
,
Winalski
,
C. S.
, and
White
,
L. M.
,
2005
, “
MRI of Articular Cartilage: Revisiting Current Status and Future Directions
,”
AJR, Am. J. Roentgenol.
,
185
(
4
), pp.
899
914
.10.2214/AJR.05.0099
227.
Shapiro
,
L.
,
Harish
,
M.
,
Hargreaves
,
B.
,
Staroswiecki
,
E.
, and
Gold
,
G.
,
2012
, “
Advances in Musculoskeletal MRI: Technical Considerations
,”
J. Magn. Reson. Imaging
,
36
(
4
), pp.
775
787
.10.1002/jmri.23629
228.
Mamisch
,
T. C.
,
Bittersohl
,
B.
,
Hughes
,
T.
,
Kim
,
Y. J.
,
Welsch
,
G. H.
,
Dudda
,
M.
,
Siebenrock
,
K. A.
,
Werlen
,
S.
, and
Trattnig
,
S.
,
2008
, “
Magnetic Resonance Imaging of the Hip at 3 Tesla: Clinical Value in Femoroacetabular Impingement of the Hip and Current Concepts
,”
Semin. Musculoskeletal Radiol.
,
12
(
3
), pp.
212
222
.10.1055/s-0028-1083105
229.
Julkunen
,
P.
,
Korhonen
,
R. K.
,
Nissi
,
M. J.
, and
Jurvelin
,
J. S.
,
2008
, “
Mechanical Characterization of Articular Cartilage by Combining Magnetic Resonance Imaging and Finite-Element Analysis: A Potential Functional Imaging Technique
,”
Phys. Med. Biol.
,
53
(
9
), pp.
2425
2438
.10.1088/0031-9155/53/9/014
230.
Pierce
,
D. M.
,
Trobin
,
W.
,
Raya
,
J. G.
,
Trattnig
,
S.
,
Bischof
,
H.
,
Glaser
,
C.
, and
Holzapfel
,
G. A.
,
2010
, “
DT-MRI Based Computation of Collagen Fiber Deformation in Human Articular Cartilage: A Feasibility Study
,”
Ann. Biomed. Eng.
,
38
(
7
), pp.
2447
2463
.10.1007/s10439-010-9990-9
231.
Mlynarik
,
V.
,
Degrassi
,
A.
,
Toffanin
,
R.
,
Vittur
,
F.
,
Cova
,
M.
, and
Pozzi-Mucelli
,
R. S.
,
1996
, “
Investigation of Laminar Appearance of Articular Cartilage by Means of Magnetic Resonance Microscopy
,”
Magn. Reson. Imaging
,
14
(
4
), pp.
435
442
.10.1016/0730-725X(96)00025-2
232.
Xia
,
Y.
,
1998
, “
Relaxation Anisotropy in Cartilage by NMR Microscopy (muMRI) at 14-Microm Resolution
,”
Magn. Reson. Med.
,
39
(
6
), pp.
941
949
.10.1002/mrm.1910390612
233.
Xia
,
Y.
,
Farquhar
,
T.
,
Burton-Wurster
,
N.
, and
Lust
,
G.
,
1997
, “
Origin of Cartilage Laminae in MRI
,”
J. Magn. Reson. Imaging
,
7
(
5
), pp.
887
894
.10.1002/jmri.1880070518
234.
Brossmann
,
J.
,
Frank
,
L. R.
,
Pauly
,
J. M.
,
Boutin
,
R. D.
,
Pedowitz
,
R. A.
,
Haghighi
,
P.
, and
Resnick
,
D.
,
1997
, “
Short Echo Time Projection Reconstruction MR Imaging of Cartilage: Comparison With Fat-Suppressed Spoiled GRASS and Magnetization Transfer Contrast MR Imaging
,”
Radiology
,
203
(
2
), pp.
501
507
.
235.
Rand
,
T.
,
Imhof
,
H.
,
Czerny
,
C.
,
Breitenseher
,
M.
,
Machold
,
K.
,
Turetschek
,
K.
, and
Trattnig
,
S.
,
1999
, “
Discrimination Between Fluid, Synovium, and Cartilage in Patients With Rheumatoid Arthritis: Contrast Enhanced Spin Echo Versus Non-contrast-Enhanced Fat-Suppressed Gradient Echo MR Imaging
,”
Clin. Radiol.
,
54
(
2
), pp.
107
110
.10.1016/S0009-9260(99)91070-X
236.
Recht
,
M. P.
,
Kramer
,
J.
,
Marcelis
,
S.
,
Pathria
,
M. N.
,
Trudell
,
D.
,
Haghighi
,
P.
,
Sartoris
,
D. J.
, and
Resnick
,
D.
,
1993
, “
Abnormalities of Articular Cartilage in the Knee: Analysis of Available MR Techniques
,”
Radiology
,
187
(
2
), pp.
473
478
.
237.
Rakhra
,
K. S.
,
Lattanzio
,
P. J.
,
Cardenas-Blanco
,
A.
,
Cameron
,
I. G.
, and
Beaule
,
P. E.
,
2012
, “
Can T1-Rho MRI Detect Acetabular Cartilage Degeneration in Femoroacetabular Impingement?: A Pilot Study
,”
J. Bone Jt. Surg. Br.
,
94
(
9
), pp.
1187
1192
.
238.
Cohen
,
Z. A.
,
McCarthy
,
D. M.
,
Kwak
,
S. D.
,
Legrand
,
P.
,
Fogarasi
,
F.
,
Ciaccio
,
E. J.
, and
Ateshian
,
G. A.
,
1999
, “
Knee Cartilage Topography, Thickness, and Contact Areas From MRI: In-Vitro Calibration and In-Vivo Measurements
,”
Osteoarthritis Cartilage
,
7
(
1
), pp.
95
109
.10.1053/joca.1998.0165
239.
McGibbon
,
C. A.
,
Bencardino
,
J.
,
Yeh
,
E. D.
, and
Palmer
,
W. E.
,
2003
, “
Accuracy of Cartilage and Subchondral Bone Spatial Thickness Distribution From MRI
,”
J. Magn. Reson. Imaging
,
17
(
6
), pp.
703
715
.10.1002/jmri.10309
240.
Moro-oka
,
T. A.
,
Hamai
,
S.
,
Miura
,
H.
,
Shimoto
,
T.
,
Higaki
,
H.
,
Fregly
,
B. J.
,
Iwamoto
,
Y.
, and
Banks
,
S. A.
,
2007
, “
Can Magnetic Resonance Imaging-Derived Bone Models Be Used for Accurate Motion Measurement With Single-Plane Three-Dimensional Shape Registration?
,”
J. Orthop. Res.
,
25
(
7
), pp.
867
872
.10.1002/jor.20355
241.
Scientific Computing and Imaging Institute
, £Seg3D, “
Volumetric Image Segmentation and Visualization. Scientific Computing and Imaging Institute (SCI)
,” http://www.seg3d.org.
242.
Boissonnat
,
J.-D.
,
1988
, “
Shape Reconstruction From Planar Cross Sections
,”
Comput. Vis. Graph. Image Process.
,
44
(
1
), pp.
1
29
.10.1016/S0734-189X(88)80028-8
243.
Schneider
,
E.
,
Nevitt
,
M.
,
McCulloch
,
C.
,
Cicuttini
,
F. M.
,
Duryea
,
J.
,
Eckstein
,
F.
, and
Tamez-Pena
,
J.
,
2012
, “
Equivalence and Precision of Knee Cartilage Morphometry Between Different Segmentation Teams, Cartilage Regions, and MR Acquisitions
,”
Osteoarthritis Cartilage
,
20
(
8
), pp.
869
879
.10.1016/j.joca.2012.04.005
244.
Taubin
,
G.
,
Zhang
,
T.
, and
Golub
,
G.
,
1996
, “
Optimal Surface Smoothing as Filter Design Computer Vision — ECCV’96
,”
B.
Buxton
and
R.
Cipolla
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
283
292
.
245.
Stammberger
,
T.
,
Eckstein
,
F.
,
Michaelis
,
M.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
1999
, “
Interobserver Reproducibility of Quantitative Cartilage Measurements: Comparison of B-Spline Snakes and Manual Segmentation
,”
Magn. Reson. Imaging
,
17
(
7
), pp.
1033
1042
.10.1016/S0730-725X(99)00040-5
246.
Al-Helo
,
S.
,
Alomari
,
R. S.
,
Chaudhary
,
V.
, and
Al-Zoubi
,
M. B.
,
2011
, “
Segmentation of Lumbar Vertebrae From Clinical CT Using Active Shape Models and GVF-Snake
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
2011
, pp.
8033
8036
.
247.
Fripp
,
J.
,
Crozier
,
S.
,
Warfield
,
S. K.
, and
Ourselin
,
S.
,
2007
, “
Automatic Segmentation of the Bone and Extraction of the Bone-Cartilage Interface From Magnetic Resonance Images of the Knee
,”
Phys. Med. Biol.
,
52
(
6
), pp.
1617
1631
.10.1088/0031-9155/52/6/005
248.
Lamecker
,
H.
,
Seebass
,
M.
,
Hege
,
H. C.
, and
Deuflhard
,
P.
,
2004
, “
A 3D Statistical Shape Model of the Pelvic Bone for Segmentation
,”
Proc. SPIE, Medical Imaging: Image Processing
,
5370
, pp.
1341–1351
.
249.
Tameem
,
H. Z.
,
Selva
,
L. E.
, and
Sinha
,
U. S.
,
2007
, “
Morphological Atlases of Knee Cartilage: Shape Indices to Analyze Cartilage Degradation in Osteoarthritic and Non-osteoarthritic Population
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
2007
, pp.
1310
1313
.
250.
Heimann
,
T.
, and
Meinzer
,
H. P.
,
2009
, “
Statistical Shape Models for 3D Medical Image Segmentation: A Review
,”
Med. Image Anal.
,
13
(
4
), pp.
543
563
.10.1016/j.media.2009.05.004
251.
Baldwin
,
M. A.
,
Langenderfer
,
J. E.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2010
, “
Development of Subject-Specific and Statistical Shape Models of the Knee Using an Efficient Segmentation and Mesh-Morphing Approach
,”
Comput. Methods Programs Biomed.
,
97
(
3
), pp.
232
240
.10.1016/j.cmpb.2009.07.005
252.
Weiss
,
J. A.
,
Gardiner
,
J. C.
,
Ellis
,
B. J.
,
Lujan
,
T. J.
, and
Phatak
,
N. S.
,
2005
, “
Three-Dimensional Finite Element Modeling of Ligaments: Technical Aspects
,”
Med. Eng. Phys.
,
27
(
10
), pp.
845
861
.10.1016/j.medengphy.2005.05.006
253.
Lo
,
S. H.
,
1991
, “
Volume Discretization Into Tetrahedra—I. Verification and Orientation of Boundary Surfaces
,”
Computers & Structures
,
39
(
5
), pp.
493
500
.10.1016/0045-7949(91)90058-T
254.
Lo
,
S. H.
,
1991
, “
Volume Discretization Into Tetrahedra—II. 3D Triangulation by Advancing Front Approach
,”
Comput. Struct.
,
39
(
5
), pp.
501
511
.10.1016/0045-7949(91)90059-U
255.
Shephard
,
M. S.
, and
Georges
,
M. K.
,
1991
, “
Automatic Three-Dimensional Mesh Generation by the Finite Octree Technique
,”
Int. J. Numer. Methods Eng.
,
32
(
4
), pp.
709
749
.10.1002/nme.1620320406
256.
Wrazidlo
,
W.
,
Brambs
,
H. J.
,
Lederer
,
W.
,
Schneider
,
S.
,
Geiger
,
B.
, and
Fischer
,
C.
,
1991
, “
An Alternative Method of Three-Dimensional Reconstruction From Two-Dimensional CT and MR Data Sets
,”
Eur. J. Radiol.
,
12
(
1
), pp.
11
16
.10.1016/0720-048X(91)90125-f
257.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method: The Basis
,
Butterworth-Heinemann
,
Oxford
.
258.
Beissel
,
S. R.
, and
Johnson
,
G. R.
,
2000
, “
Large-Deformation Triangular and Tetrahedral Element Formulations for Unstructured Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
187
(
3-4
), pp.
469
482
.10.1016/S0045-7825(99)00336-9
259.
Bonet
,
J.
,
Marriott
,
H.
, and
Hassan
,
O.
,
2001
, “
An Averaged Nodal Deformation Gradient Linear Tetrahedral Element for Large Strain Explicit Dynamic Applications
,”
Commun. Numer. Methods Eng.
,
17
(
8
), pp.
551
561
.10.1002/cnm.429
260.
Gee
,
M. W.
,
Dohrmann
,
C. R.
,
Key
,
S. W.
, and
Wall
,
W. A.
,
2009
, “
A Uniform Nodal Strain Tetrahedron With Isochoric Stabilization
,”
Int. J. Numer. Methods Eng.
,
78
(
4
), pp.
429
443
.10.1002/nme.2493
261.
Puso
,
M. A.
, and
Solberg
,
J.
,
2006
, “
A Stabilized Nodally Integrated Tetrahedral
,”
Int. J. Numer. Methods Eng.
,
67
(
6
), pp.
841
867
.10.1002/nme.1651
262.
Taylor
,
R. L.
,
2000
, “
A Mixed-Enhanced Formulation for Tetrahedral Finite Elements
,”
Int. J. Numer. Methods Eng.
,
47
(
1-3
), pp.
205
227
.10.1002/(SICI)1097-0207(20000110/30)47:1/3<205::AID-NME768>3.0.CO;2-J
263.
Yao
,
J.
,
Funkenbusch
,
P. D.
,
Snibbe
,
J.
,
Maloney
,
M.
, and
Lerner
,
A. L.
,
2006
, “
Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
399
408
.10.1115/1.2191077
264.
Yao
,
J.
,
Salo
,
A. D.
,
Lee
,
J.
, and
Lerner
,
A. L.
,
2008
, “
Sensitivity of Tibio-Menisco-Femoral Joint Contact Behavior to Variations in Knee Kinematics
,”
J. Biomech.
,
41
(
2
), pp.
390
398
.10.1016/j.jbiomech.2007.08.015
265.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
266.
Kennedy
,
M. J.
,
Lamontagne
,
M.
, and
Beaule
,
P. E.
,
2009
, “
Femoroacetabular Impingement Alters Hip and Pelvic Biomechanics During Gait Walking Biomechanics of FAI
,”
Gait and Posture
,
30
(
1
), pp.
41
44
.10.1016/j.gaitpost.2009.02.008
267.
Rau
,
G.
,
Disselhorst-Klug
,
C.
, and
Schmidt
,
R.
,
2000
, “
Movement Biomechanics Goes Upwards: From the Leg to the Arm
,”
J. Biomech.
,
33
(
10
), pp.
1207
1216
.10.1016/S0021-9290(00)00062-2
268.
Fuller
,
J.
,
Liu
,
L. J.
,
Murphy
,
M. C.
, and
Mann
,
R. W.
,
1997
, “
A Comparison of Lower-Extremity Skeletal Kinematics Measured Using Skin- and Pin-Mounted Markers
,”
Hum. Mov. Sci.
,
16
(
2-3
), pp.
219
242
.10.1016/S0167-9457(96)00053-X
269.
Garling
,
E. H.
,
Kaptein
,
B. L.
,
Mertens
,
B.
,
Barendregt
,
W.
,
Veeger
,
H. E.
,
Nelissen
,
R. G.
, and
Valstar
,
E. R.
,
2007
, “
Soft-Tissue Artefact Assessment During Step-Up Using Fluoroscopy and Skin-Mounted Markers
,”
J. Biomech.
,
40
(
Suppl 1
), pp.
S18
S24
.10.1016/j.jbiomech.2007.03.003
270.
Anderst
,
W. J.
,
Les
,
C.
, and
Tashman
,
S.
,
2005
, “
In Vivo Serial Joint Space Measurements During Dynamic Loading in a Canine Model of Osteoarthritis
,”
Osteoarthritis Cartilage
,
13
(
9
), pp.
808
816
.10.1016/j.joca.2005.04.019
271.
Bey
,
M. J.
,
Zauel
,
R.
,
Brock
,
S. K.
, and
Tashman
,
S.
,
2006
, “
Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
604
609
.10.1115/1.2206199
272.
Bingham
,
J. T.
,
Papannagari
,
R.
,
Van de Velde
,
S. K.
,
Gross
,
C.
,
Gill
,
T. J.
,
Felson
,
D. T.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2008
, “
In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint
,”
Rheumatology
,
47
(
11
), pp.
1622
1627
.10.1093/rheumatology/ken345
273.
Boyer
,
P. J.
,
Massimini
,
D. F.
,
Gill
,
T. J.
,
Papannagari
,
R.
,
Stewart
,
S. L.
,
Warner
,
J. P.
, and
Li
,
G.
,
2008
, “
In Vivo Articular Cartilage Contact at the Glenohumeral Joint: Preliminary Report
,”
J. Orthop. Sci.
,
13
(
4
), pp.
359
365
.10.1007/s00776-008-1237-3
274.
Fu
,
E.
,
Li
,
G.
,
Souer
,
J. S.
,
Lozano-Calderon
,
S.
,
Herndon
,
J. H.
,
Jupiter
,
J. B.
, and
Chen
,
N. C.
,
2009
, “
Elbow Position Affects Distal Radioulnar Joint Kinematics
,”
J. Hand Surg.
,
34
(
7
), pp.
1261
1268
.10.1016/j.jhsa.2009.04.025
275.
Kozanek
,
M.
,
Fu
,
E. C.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
, and
Li
,
G.
,
2009
, “
Posterolateral Structures of the Knee in Posterior Cruciate Ligament Deficiency
,”
Am. J. Sports Med.
,
37
(
3
), pp.
534
541
.10.1177/0363546508325664
276.
Li
,
G.
,
Papannagari
,
R.
,
Nha
,
K. W.
,
Defrate
,
L. E.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
,
2007
, “
The Coupled Motion of the Femur and Patella During In Vivo Weightbearing Knee Flexion
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
937
943
.10.1115/1.2803267
277.
Li
,
G.
,
Van de Velde
,
S. K.
, and
Bingham
,
J. T.
,
2008
, “
Validation of a Non-invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
,
41
(
7
), pp.
1616
1622
.10.1016/j.jbiomech.2008.01.034
278.
Moynihan
,
A. L.
,
Varadarajan
,
K. M.
,
Hanson
,
G. R.
,
Park
,
S. E.
,
Nha
,
K. W.
,
Suggs
,
J. F.
,
Johnson
,
T.
, and
Li
,
G.
,
2010
, “
In Vivo Knee Kinematics During High Flexion After a Posterior-Substituting Total Knee Arthroplasty
,”
Int. Orthop.
,
34
(
4
), pp.
497
503
.10.1007/s00264-009-0777-2
279.
Nha
,
K. W.
,
Papannagari
,
R.
,
Gill
,
T. J.
,
Van de Velde
,
S. K.
,
Freiberg
,
A. A.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2008
, “
In Vivo Patellar Tracking: Clinical Motions and Patellofemoral Indices
,”
J. Orthop. Res.
,
26
(
8
), pp.
1067
1074
.10.1002/jor.20554
280.
Suggs
,
J. F.
,
Kwon
,
Y. M.
,
Durbhakula
,
S. M.
,
Hanson
,
G. R.
, and
Li
,
G.
,
2009
, “
In Vivo Flexion and Kinematics of the Knee After TKA: Comparison of a Conventional and a High Flexion Cruciate-Retaining TKA Design
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
17
(
2
), pp.
150
156
.10.1007/s00167-008-0637-4
281.
Tashman
,
S.
, and
Anderst
,
W.
,
2003
, “
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
238
245
.10.1115/1.1559896
282.
Tashman
,
S.
,
Anderst
,
W.
,
Kolowich
,
P.
,
Havstad
,
S.
, and
Arnoczky
,
S.
,
2004
, “
Kinematics of the ACL-Deficient Canine Knee During Gait: Serial Changes Over Two Years
,”
J. Orthop. Res.
,
22
(
5
), pp.
931
941
.10.1016/j.orthres.2004.01.008
283.
Van de Velde
,
S. K.
,
Bingham
,
J. T.
,
Gill
,
T. J.
, and
Li
,
G.
,
2009
, “
Analysis of Tibiofemoral Cartilage Deformation in the Posterior Cruciate Ligament-Deficient Knee
,”
J. Bone Jt. Surg.
,
91
(
1
), pp.
167
175
.10.2106/JBJS.H.00177
284.
Bey
,
M. J.
,
Kline
,
S. K.
,
Tashman
,
S.
, and
Zauel
,
R.
,
2008
, “
Accuracy of Biplane X-ray Imaging Combined With Model-Based Tracking for Measuring In-Vivo Patellofemoral Joint Motion
,”
J. Orthop. Surg. Res.
,
3
, p.
38
.10.1186/1749-799X-3-38
285.
Suggs
,
J.
,
Wang
,
C.
, and
Li
,
G.
,
2003
, “
The Effect of Graft Stiffness on Knee Joint Biomechanics After ACL Reconstruction–A 3D Computational Simulation
,”
Clin. Biomech.
,
18
(
1
), pp.
35
43
.10.1016/S0268-0033(02)00137-7
286.
Wan
,
L.
,
de Asla
,
R. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2008
, “
In Vivo Cartilage Contact Deformation of Human Ankle Joints Under Full Body Weight
,”
J. Orthop. Res.
,
26
(
8
), pp.
1081
1089
.10.1002/jor.20593
287.
You
,
B. M.
,
Siy
,
P.
,
Anderst
,
W.
, and
Tashman
,
S.
,
2001
, “
In Vivo Measurement of 3-D Skeletal Kinematics From Sequences of Biplane Radiographs: Application to Knee Kinematics
,”
IEEE Trans. Med. Imaging
,
20
(
6
), pp.
514
525
.10.1109/42.929617
288.
Acker
,
S.
,
Li
,
R.
,
Murray
,
H.
,
John
,
P. S.
,
Banks
,
S.
,
Mu
,
S.
,
Wyss
,
U.
, and
Deluzio
,
K.
,
2011
, “
Accuracy of Single-Plane Fluoroscopy in Determining Relative Position and Orientation of Total Knee Replacement Components
,”
J. Biomech.
,
44
(
4
), pp.
784
787
.10.1016/j.jbiomech.2010.10.033
289.
Wassilew
,
G. I.
,
Janz
,
V.
,
Heller
,
M. O.
,
Tohtz
,
S.
,
Rogalla
,
P.
,
Hein
,
P.
, and
Perka
,
C.
,
2013
, “
Real Time Visualization of Femoroacetabular Impingement and Subluxation Using 320-Slice Computed Tomography
,”
J. Orthop. Res.
,
31
(
2
), pp.
275
281
.10.1002/jor.22224
290.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
291.
Bergmann
,
G.
,
Graichen
,
F.
,
Rohlmann
,
A.
, and
Linke
,
H.
,
1997
, “
Hip Joint Forces During Load Carrying
,”
Clin. Orthop. Relat. Res.
, (
335
), pp.
190
201
.
292.
Hodge
,
W. A.
,
Fijan
,
R. S.
,
Carlson
,
K. L.
,
Burgess
,
R. G.
,
Harris
,
W. H.
, and
Mann
,
R. W.
,
1986
, “
Contact Pressures in the Human Hip Joint Measured In Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
,
83
(
9
), pp.
2879
2883
.10.1073/pnas.83.9.2879
293.
Varadarajan
,
K. M.
,
Moynihan
,
A. L.
,
D'Lima
,
D.
,
Colwell
,
C. W.
, and
Li
,
G.
,
2008
, “
In Vivo Contact Kinematics and Contact Forces of the Knee After Total Knee Arthroplasty During Dynamic Weight-Bearing Activities
,”
J. Biomech.
,
41
(
10
), pp.
2159
2168
.10.1016/j.jbiomech.2008.04.021
294.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
,
Halder
,
A.
,
Beier
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2011
, “
Measurement of Shoulder Joint Loads During Wheelchair Propulsion Measured In Vivo
,”
Clin. Biomech.
,
26
(
10
), pp.
982
989
.10.1016/j.clinbiomech.2011.05.017
295.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2009
, “
An Instrumented Implant for In Vivo Measurement of Contact Forces and Contact Moments in the Shoulder Joint
,”
Med. Eng. Phys.
,
31
(
2
), pp.
207
213
.10.1016/j.medengphy.2008.07.011
296.
Zhao
,
D.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Fregly
,
B. J.
,
2007
, “
In Vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities
,”
J. Orthop. Res.
,
25
(
5
), pp.
593
602
.10.1002/jor.20362
297.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
298.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems
,”
ASME J. Biomech. Eng.
,
114
(
4
), pp.
450
460
.10.1115/1.2894094
299.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait Are Practically Equivalent
,”
J. Biomech.
,
34
(
2
), pp.
153
161
.10.1016/S0021-9290(00)00155-X
300.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
,
2003
, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
,
21
(
6
), pp.
1098
1106
.10.1016/S0736-0266(03)00113-X
301.
Viceconti
,
M.
, and
Taddei
,
F.
,
2003
, “
Automatic Generation of Finite Element Meshes From Computed Tomography Data
,”
Crit. Rev. Biomed. Eng.
,
31
(
1-2
), pp.
27
72
.10.1615/CritRevBiomedEng.v31.i12.20
302.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
van Erning
,
L.
,
1993
, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
,
26
(
4-5
), pp.
523
535
.10.1016/0021-9290(93)90014-6
303.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
,
L.
,
1995
, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
272
278
.10.1115/1.2794181
304.
Mononen
,
M. E.
,
Julkunen
,
P.
,
Toyras
,
J.
,
Jurvelin
,
J. S.
,
Kiviranta
,
I.
, and
Korhonen
,
R. K.
,
2011
, “
Alterations in Structure and Properties of Collagen Network of Osteoarthritic and Repaired Cartilage Modify Knee Joint stresses
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
357
369
.10.1007/s10237-010-0239-1
305.
Nieminen
,
M. T.
,
Toyras
,
J.
,
Laasanen
,
M. S.
,
Silvennoinen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2004
, “
Prediction of Biomechanical Properties of Articular Cartilage With Quantitative Magnetic Resonance Imaging
,”
J. Biomech.
,
37
(
3
), pp.
321
328
.10.1016/S0021-9290(03)00291-4
306.
Nissi
,
M. J.
,
Rieppo
,
J.
,
Toyras
,
J.
,
Laasanen
,
M. S.
,
Kiviranta
,
I.
,
Nieminen
,
M. T.
, and
Jurvelin
,
J. S.
,
2007
, “
Estimation of Mechanical Properties of Articular Cartilage With MRI - dGEMRIC, T2 and T1 Imaging in Different Species With Variable Stages of Maturation
,”
Osteoarthritis Cartilage
,
15
(
10
), pp.
1141
1148
.10.1016/j.joca.2007.03.018
307.
Räsänen
,
L. P.
,
Mononen
,
M. E.
,
Nieminen
,
M. T.
,
Lammentausta
,
E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2013
, “
Implementation of Subject-Specific Collagen Architecture of Cartilage Into a 2D Computational Model of a Knee Joint-Data From the Osteoarthritis Initiative (OAI)
,”
J. Orthop. Res.
,
31
(
1
), pp.
10
22
.10.1002/jor.22175
308.
Jobke
,
B.
,
Bolbos
,
R.
,
Saadat
,
E.
,
Cheng
,
J.
,
Li
,
X.
, and
Majumdar
,
S.
,
2013
, “
Mechanism of Disease in Early Osteoarthritis: Application of Modern MR Imaging Techniques - A Technical Report
,”
Magn. Reson. Imaging
,
31
(
1
), pp.
156
161
.10.1016/j.mri.2012.07.005
309.
Tang
,
S. Y.
,
Souza
,
R. B.
,
Ries
,
M.
,
Hansma
,
P. K.
,
Alliston
,
T.
, and
Li
,
X.
,
2011
, “
Local Tissue Properties of Human Osteoarthritic Cartilage Correlate With Magnetic Resonance T(1) Rho Relaxation Times
,”
J. Orthop. Res.
,
29
(
9
), pp.
1312
1319
.10.1002/jor.21381
310.
Pierce
,
D. M.
,
Ricken
,
T.
, and
Holzapfel
,
G. A.
, “
A Hyperelastic Biphasic Fibre-Reinforced Model of Articular Cartilage Considering Distributed Collagen Fibre Orientations: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Biomech. Biomed. Eng.
, (in press).
311.
Bittersohl
,
B.
,
Miese
,
F. R.
,
Hosalkar
,
H. S.
,
Herten
,
M.
,
Antoch
,
G.
,
Krauspe
,
R.
, and
Zilkens
,
C.
,
2012
, “
T2* Mapping of Hip Joint Cartilage in Various Histological Grades of Degeneration
,”
Osteoarthritis Cartilage
,
20
(
7
), pp.
653
660
.10.1016/j.joca.2012.03.011
312.
Bittersohl
,
B.
,
Hosalkar
,
H. S.
,
Hughes
,
T.
,
Kim
,
Y. J.
,
Werlen
,
S.
,
Siebenrock
,
K. A.
, and
Mamisch
,
T. C.
,
2009
, “
Feasibility of T2* Mapping for the Evaluation of Hip Joint Cartilage at 1.5T Using a Three-Dimensional (3D), Gradient-Echo (GRE) Sequence: A Prospective Study
,”
Magn. Reson. Med.
,
62
(
4
), pp.
896
901
.10.1002/mrm.22096
313.
Xia
,
Y.
,
2007
, “
Resolution ‘Scaling Law’ in MRI of Articular Cartilage
,”
Osteoarthritis Cartilage
,
15
(
4
), pp.
363
365
.10.1016/j.joca.2006.12.004
314.
ASME Committee (PT60) on Verification and Validation in Computational Solid Mechanics, 2006, “Guide for Verification and Validation in Computational Solid Mechanics,“ America Society of Mechanical Engineers, New York.
315.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2010
, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
7
), pp.
801
812
.10.1243/09544119JEIM649
316.
Baldwin
,
M. A.
,
Clary
,
C.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2009
, “
Verification of Predicted Specimen-Specific Natural and Implanted Patellofemoral Kinematics During Simulated Deep Knee Bend
,”
J. Biomech.
,
42
(
14
), pp.
2341
2348
.10.1016/j.jbiomech.2009.06.028
317.
Elias
,
J. J.
,
Wilson
,
D. R.
,
Adamson
,
R.
, and
Cosgarea
,
A. J.
,
2004
, “
Evaluation of a Computational Model Used to Predict the Patellofemoral Contact Pressure Distribution
,”
J. Biomech.
,
37
(
3
), pp.
295
302
.10.1016/S0021-9290(03)00306-3
318.
Brand
,
R. A.
,
2005
, “
Joint Contact Stress: A Reasonable Surrogate for Biological Processes?
,”
Iowa Orthop. J.
,
25
, pp.
82
94
.
319.
Brown
,
T. D.
,
Rudert
,
M. J.
, and
Grosland
,
N. M.
,
2004
, “
New Methods for Assessing Cartilage Contact Stress After Articular Fracture
,”
Clin. Orthop. Relat. Res.
(
423
), pp.
52
58
.10.1097/01.blo.0000132633.38338.8b
320.
Rudert
,
M. J.
,
Ellis
,
B. J.
,
Henak
,
C. R.
,
Stroud
,
N. J.
,
Pedersen
,
D. R.
,
Weiss
,
J. A.
, and
Brown
,
T. D.
, “
A New Sensor for Measurement of Dynamic Contact Stress in the Hip
,”
ASME J. Biomech. Eng.
, (submitted).
321.
Rudert
,
M. J.
,
Ellis
,
B. J.
,
Henak
,
C. R.
,
Stroud
,
N. J.
,
Weiss
,
J. A.
, and
Brown
,
T. D.
,
2011
, “
A New Sensor for Measurement of Dynamic Contact Pressure in the Hip
,”
Orthopaedic Research Society Meeting
, Abstract No. 936571.
322.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
1998
, “
Effects of Inserting a Pressensor Film Into Articular Joints on the Actual Contact Mechanics
,”
ASME J. Biomech. Eng.
,
120
(
5
), pp.
655
659
.10.1115/1.2834758
323.
Dennison
,
C. R.
, and
Wild
,
P. M.
,
2010
, “
Sensitivity of Bragg Gratings in Birefringent Optical Fiber to Transverse Compression Between Conforming Materials
,”
Appl. Opt.
,
49
(
12
), pp.
2250
2261
.10.1364/AO.49.002250
324.
Pawaskar
,
S. S.
,
Grosland
,
N. M.
,
Ingham
,
E.
,
Fisher
,
J.
, and
Jin
,
Z.
,
2011
, “
Hemiarthroplasty of Hip Joint: An Experimental Validation Using Porcine Acetabulum
,”
J. Biomech.
,
44
(
8
), pp.
1536
1542
.10.1016/j.jbiomech.2011.02.140
325.
Laz
,
P. J.
, and
Browne
,
M.
,
2010
, “
A Review of Probabilistic Analysis in Orthopaedic Biomechanics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
8
), pp.
927
943
.10.1243/09544119JEIM739
326.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25-28
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
327.
Easley
,
S. K.
,
Pal
,
S.
,
Tomaszewski
,
P. R.
,
Petrella
,
A. J.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2007
, “
Finite Element-Based Probabilistic Analysis Tool for Orthopaedic Applications
,”
Comput. Methods Programs Biomed.
,
85
(
1
), pp.
32
40
.10.1016/j.cmpb.2006.09.013
328.
Adams
,
B.
,
Bohnhoff
,
W.
,
Dalbey
,
K.
,
Eddy
,
J.
,
Eldred
,
M.
,
Gay
,
D.
,
Haskell
,
K.
,
Hough
,
P.
, and
Swiler
,
L.
,
2011
, “
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User's Manual
,” Sandia Technical Report SAND2010-2183.
329.
Dar
,
F. H.
,
Meakin
,
J. R.
, and
Aspden
,
R. M.
,
2002
, “
Statistical Methods in Finite Element Analysis
,”
J. Biomech.
,
35
(
9
), pp.
1155
1161
.10.1016/S0021-9290(02)00085-4
330.
Dhaher
,
Y. Y.
,
Kwon
,
T.-H.
, and
Barry
,
M.
, “
The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions
,”
J. Biomech.
,
43
(
16
), pp.
3118
3125
.10.1016/j.jbiomech.2010.08.005
331.
Fernandez
,
J. W.
, and
Hunter
,
P. J.
,
2005
, “
An Anatomically Based Patient-Specific Finite Element Model of Patella Articulation: Towards a Diagnostic Tool
,”
Biomech. Model. Mechanobiol.
,
4
(
1
), pp.
20
38
.10.1007/s10237-005-0072-0
332.
Li
,
G.
,
Lopez
,
O.
, and
Rubash
,
H.
,
2001
, “
Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis
,”
ASME J. Biomech. Eng.
,
123
(
4
), pp.
341
346
.10.1115/1.1385841
333.
Mesfar
,
W.
, and
Shirazi-Adl
,
A.
,
2005
, “
Biomechanics of the Knee Joint in Flexion Under Various Quadriceps Forces
,”
The Knee
,
12
(
6
), pp.
424
434
.10.1016/j.knee.2005.03.004
334.
Miller
,
E. J.
,
Riemer
,
R. F.
,
Haut Donahue
,
T. L.
, and
Kaufman
,
K. R.
,
2009
, “
Experimental Validation of a Tibiofemoral Model for Analyzing Joint Force Distribution
,”
J. Biomech.
,
42
(
9
), pp.
1355
1359
.10.1016/j.jbiomech.2009.03.019
335.
Rapperport
,
D. J.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
,
1985
, “
Contact Finite Element Stress Analysis of the Hip Joint
,”
J. Orthop. Res.
,
3
(
4
), pp.
435
446
.10.1002/jor.1100030406
336.
Lee
,
K. K.
, and
Teo
,
E. C.
,
2005
, “
Material Sensitivity Study on Lumbar Motion Segment (L2-L3) Under Sagittal Plane Loadings Using Probabilistic Method
,”
J. Spinal Disord. Tech.
,
18
(
2
), pp.
163
170
.10.1097/01.bsd.0000147658.60961.51
337.
Ng
,
H. W.
, and
Teo
,
E. C.
,
2004
, “
Probabilistic Design Analysis of the Influence of Material Property on the Human Cervical Spine
,”
J. Spinal Disord. Tech.
,
17
(
2
), pp.
123
133
.10.1097/00024720-200404000-00009
338.
Niemeyer
,
F.
,
Wilke
,
H. J.
, and
Schmidt
,
H.
,
2012
, “
Geometry Strongly Influences the Response of Numerical Models of the Lumbar Spine–A Probabilistic Finite Element Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1414
1423
.10.1016/j.jbiomech.2012.02.021
339.
Baldwin
,
M. A.
,
Laz
,
P. J.
,
Stowe
,
J. Q.
, and
Rullkoetter
,
P. J.
,
2009
, “
Efficient Probabilistic Representation of Tibiofemoral Soft Tissue Constraint
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
6
), pp.
651
659
.10.1080/10255840902822550
340.
Logothetis
,
N.
, and
Wynn
,
H. P.
,
1989
,
Quality Through Design: Experimental Design, Off-line Quality Control and Taguchi's Contributions
,
Clarendon Press
,
Oxford
.
341.
Rao
,
S. S.
,
1992
,
Reliability-Based Design
,
McGraw-Hill
,
New York
.
342.
Meachim
,
G.
, and
Bentley
,
G.
,
1978
, “
Horizontal Splitting in Patellar Articular Cartilage
,”
Arthritis Rheum.
,
21
(
6
), pp.
669
674
.10.1002/art.1780210610
343.
Hadley
,
N. A.
,
Brown
,
T. D.
, and
Weinstein
,
S. L.
,
1990
, “
The Effects of Contact Pressure Elevations and Aseptic Necrosis on the Long-Term Outcome of Congenital Hip Dislocation
,”
J. Orthop. Res.
,
8
(
4
), pp.
504
513
.10.1002/jor.1100080406
344.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
, and
Rullkoetter
,
P. J.
,
2010
, “
Computationally Efficient Finite Element Evaluation of Natural Patellofemoral Mechanics
,”
ASME J. Biomech. Eng.
,
132
(
12
), p.
121013
.10.1115/1.4002854
345.
Yang
,
N. H.
,
Canavan
,
P. K.
, and
Nayeb-Hashemi
,
H.
,
2010
, “
The Effect of the Frontal Plane Tibiofemoral Angle and Varus Knee Moment on the Contact Stress and Strain at the Knee Cartilage
,”
J. Appl. Biomech.
,
26
(
4
), pp.
432
443
.
346.
Yang
,
N. H.
,
Nayeb-Hashemi
,
H.
,
Canavan
,
P. K.
, and
Vaziri
,
A.
,
2010
, “
Effect of Frontal Plane Tibiofemoral Angle on the Stress and Strain at the Knee Cartilage During the Stance Phase of Gait
,”
J. Orthop. Res.
,
28
(
12
), pp.
1539
1547
.10.1002/jor.21174
347.
Larson
,
A. N.
,
Rabenhorst
,
B.
,
De La Rocha
,
A.
, and
Sucato
,
D. J.
,
2012
, “
Limited Intraobserver and Interobserver Reliability for the Common Measures of Hip Joint Congruency Used in Dysplasia
,”
Clin. Orthop. Relat. Res.
,
470
(
5
), pp.
1414
1420
.10.1007/s11999-011-2136-z
348.
Troelsen
,
A.
,
2009
, “
Surgical Advances in Periacetabular Osteotomy for Treatment of Hip Dysplasia in Adults
,”
Acta Orthop. Suppl.
,
80
(
332
), pp.
1
33
.10.1080/17453690610046585
349.
Wenger
,
D. E.
,
Kendell
,
K. R.
,
Miner
,
M. R.
, and
Trousdale
,
R. T.
,
2004
, “
Acetabular Labral Tears Rarely Occur in the Absence of Bony Abnormalities
,”
Clin. Orthop. Relat. Res.
, (
426
), pp.
145
150
.10.1097/01.blo.0000136903.01368.20
350.
Clohisy
,
J. C.
,
Carlisle
,
J. C.
,
Trousdale
,
R.
,
Kim
,
Y. J.
,
Beaule
,
P. E.
,
Morgan
,
P.
,
Steger-May
,
K.
,
Schoenecker
,
P. L.
, and
Millis
,
M.
,
2009
, “
Radiographic Evaluation of the Hip Has Limited Reliability
,”
Clin. Orthop. Relat. Res.
,
467
(
3
), pp.
666
675
.10.1007/s11999-008-0626-4
351.
Anderson
,
L. A.
,
Gililland
,
J.
,
Pelt
,
C.
,
Linford
,
S.
,
Stoddard
,
G. J.
, and
Peters
,
C. L.
,
2011
, “
Center Edge Angle Measurement for Hip Preservation Surgery: Technique and Caveats
,”
Orthopedics
,
34
(
2
), p.
86
.10.3928/01477447-20101221-17
352.
Hansen
,
B. J.
,
Harris
,
M. D.
,
Anderson
,
L. A.
,
Peters
,
C. L.
,
Weiss
,
J. A.
, and
Anderson
,
A. E.
,
2012
, “
Correlation Between Radiographic Measures of Acetabular Morphology With 3D Femoral Head Coverage in Patients With Acetabular Retroversion
,”
Acta Orthop.
,
83
(
3
), pp.
233
239
.10.3109/17453674.2012.684138
353.
Masrouha
,
K. Z.
,
Anderson
,
D. D.
,
Thomas
,
T. P.
,
Kuhl
,
L. L.
,
Brown
,
T. D.
, and
Marsh
,
J. L.
,
2010
, “
Acute Articular Fracture Severity and Chronic Cartilage Stress Challenge as Quantitative Risk Factors for Post-traumatic Osteoarthritis: Illustrative Cases
,”
Iowa Orthop. J.
,
30
, pp.
47
54
.
354.
Farrokhi
,
S.
,
Keyak
,
J. H.
, and
Powers
,
C. M.
,
2011
, “
Individuals With Patellofemoral Pain Exhibit Greater Patellofemoral Joint Stress: A Finite Element Analysis Study
,”
Osteoarthritis Cartilage
,
19
(
3
), pp.
287
294
.10.1016/j.joca.2010.12.001
355.
Kelly
,
M. A.
,
Fithian
,
D. C.
,
Chern
,
K. Y.
, and
Mow
,
V. C.
,
1990
, “
Structure and Function of the Meniscus: Basic and Clinical Implications
,”
Biomechanics of Diarthrodial Joints
,
V. C.
Mow
,
A.
Ratcliffe
, and
S. L.
Woo
, eds.,
Springer-Verlag
,
New York
.
356.
Krause
,
W. R.
,
Pope
,
M. H.
,
Johnson
,
R. J.
, and
Wilder
,
D. G.
,
1976
, “
Mechanical Changes in the Knee After Meniscectomy
,”
J. Bone Jt. Surg.
,
58
(
5
), pp.
599
604
.
357.
Ahmed
,
A. M.
, and
Burke
,
D. L.
,
1983
, “
In-Vitro Measurement of Static Pressure Distribution in Synovial Joints–Part I: Tibial Surface of the Knee
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
216
225
.10.1115/1.3138409
358.
Kazemi
,
M.
,
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Savard
,
P.
,
2012
, “
Partial Meniscectomy Changes Fluid Pressurization in Articular Cartilage in Human Knees
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021001
.10.1115/1.4005764
359.
Kazemi
,
M.
,
Li
,
L. P.
,
Savard
,
P.
, and
Buschmann
,
M. D.
,
2011
, “
Creep Behavior of the Intact and Meniscectomy Knee Joints
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1351
1358
.10.1016/j.jmbbm.2011.05.004
360.
Bae
,
J. Y.
,
Park
,
K. S.
,
Seon
,
J. K.
,
Kwak
,
D. S.
,
Jeon
,
I.
, and
Song
,
E. K.
,
2012
, “
Biomechanical Analysis of the Effects of Medial Meniscectomy on Degenerative Osteoarthritis
,”
Med. Biol. Eng. Comput.
,
50
(
1
), pp.
53
60
.10.1007/s11517-011-0840-1
361.
Yang
,
N.
,
Nayeb-Hashemi
,
H.
, and
Canavan
,
P. K.
,
2009
, “
The Combined Effect of Frontal Plane Tibiofemoral Knee Angle and Meniscectomy on the Cartilage Contact Stresses and Strains
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2360
2372
.10.1007/s10439-009-9781-3
362.
Yang
,
N. H.
,
Canavan
,
P. K.
,
Nayeb-Hashemi
,
H.
,
Najafi
,
B.
, and
Vaziri
,
A.
,
2010
, “
Protocol for Constructing Subject-Specific Biomechanical Models of Knee Joint
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
589
603
.10.1080/10255840903389989
363.
Markolf
,
K. L.
,
Mensch
,
J. S.
, and
Amstutz
,
H. C.
,
1976
, “
Stiffness and Laxity of the Knee–The Contributions of the Supporting Structures. A Quantitative In Vitro Study
,”
J. Bone Jt. Surg.
,
58
(
5
), pp.
583
594
.
364.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
,
2002
, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
713
720
.10.1114/1.1484219
365.
Jafari
,
A.
,
Farahmand
,
F.
, and
Meghdari
,
A.
,
2008
, “
The Effects of Trochlear Groove Geometry on Patellofemoral Joint Stability–A Computer Model Study
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
(
1
), pp.
75
88
.10.1243/09544119JEIM255
366.
Hartig-Andreasen
,
C.
,
Troelsen
,
A.
,
Thillemann
,
T. M.
, and
Soballe
,
K.
,
2012
, “
What Factors Predict Failure 4 to 12 Years After Periacetabular Osteotomy?
,”
Clin. Orthop. Relat. Res.
,
470
(
11
), pp.
2978
2987
.10.1007/s11999-012-2386-4
367.
Matheney
,
T.
,
Kim
,
Y. J.
,
Zurakowski
,
D.
,
Matero
,
C.
, and
Millis
,
M.
,
2010
, “
Intermediate to Long-Term Results Following the Bernese Periacetabular Osteotomy and Predictors of Clinical Outcome: Surgical Technique
,”
J. Bone Jt. Surg.
,
92
(
Suppl 1 Pt 2
), pp.
115
129
.10.2106/JBJS.J.00646
368.
Okano
,
K.
,
Enomoto
,
H.
,
Osaki
,
M.
, and
Shindo
,
H.
,
2009
, “
Joint Congruency as an Indication for Rotational Acetabular Osteotomy
,”
Clin. Orthop. Relat. Res.
,
467
(
4
), pp.
894
900
.10.1007/s11999-008-0443-9
369.
Okano
,
K.
,
Yamada
,
K.
,
Takahashi
,
K.
,
Enomoto
,
H.
,
Osaki
,
M.
, and
Shindo
,
H.
,
2010
, “
Joint Congruency in Abduction Before Surgery as an Indication for Rotational Acetabular Osteotomy in Early Hip Osteoarthritis
,”
Int. Orthop.
,
34
(
1
), pp.
27
32
.10.1007/s00264-009-0734-0
370.
Yasunaga
,
Y.
,
Yamasaki
,
T.
, and
Ochi
,
M.
,
2012
, “
Patient Selection Criteria for Periacetabular Osteotomy or Rotational Acetabular Osteotomy
,”
Clin. Orthop. Relat. Res.
,
470
(
12
), pp.
3342
3354
.10.1007/s11999-012-2516-z
371.
Chegini
,
S.
,
Beck
,
M.
, and
Ferguson
,
S. J.
,
2009
, “
The Effects of Impingement and Dysplasia on Stress Distributions in the Hip Joint During Sitting and Walking: A Finite Element Analysis
,”
J. Orthop. Res.
,
27
(
2
), pp.
195
201
.10.1002/jor.20747
372.
Iglič
,
A.
,
Kralj-Iglič
,
V.
,
Daniel
,
M.
, and
Maček-Lebar
,
A.
,
2002
, “
Computer Determination of Contact Stress Distribution and Size of Weight Bearing Area in the Human Hip Joint
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
2
), pp.
185
192
.10.1080/10255840290010300
373.
Ipavec
,
M.
,
Brand
,
R. A.
,
Pedersen
,
D. R.
,
Mavcic
,
B.
,
Kralj-Iglic
,
V.
, and
Iglic
,
A.
,
1999
, “
Mathematical Modelling of Stress in the Hip During Gait
,”
J. Biomech.
,
32
(
11
), pp.
1229
1235
.10.1016/S0021-9290(99)00119-0
374.
Mavčič
,
B.
,
Pompe
,
B.
,
Antolič
,
V.
,
Daniel
,
M.
,
Iglič
,
A.
, and
Kralj-Iglič
,
V.
,
2002
, “
Mathematical Estimation of Stress Distribution in Normal and Dysplastic Human Hips
,”
J. Orthop. Res.
,
20
(
5
), pp.
1025
1030
.10.1016/S0736-0266(02)00014-1
375.
Pompe
,
B.
,
Daniel
,
M.
,
Sochor
,
M.
,
Vengust
,
R.
,
Kralj-Iglič
,
V.
, and
Iglič
,
A.
,
2003
, “
Gradient of Contact Stress in Normal and Dysplastic Human Hips
,”
Med. Eng. Phys.
,
25
(
5
), pp.
379
385
.10.1016/S1350-4533(03)00014-6
376.
Haemer
,
J. M.
,
Carter
,
D. R.
, and
Giori
,
N. J.
,
2012
, “
The Low Permeability of Healthy Meniscus and Labrum Limit Articular Cartilage Consolidation and Maintain Fluid Load Support in the Knee and Hip
,”
J. Biomech.
,
45
(
8
), pp.
1450
1456
.10.1016/j.jbiomech.2012.02.015
377.
Haemer
,
J. M.
,
Song
,
Y.
,
Carter
,
D. R.
, and
Giori
,
N. J.
,
2011
, “
Changes in Articular Cartilage Mechanics With Meniscectomy: A Novel Image-Based Modeling Approach and Comparison to Patterns of OA
,”
J. Biomech.
,
44
(
12
), pp.
2307
2312
.10.1016/j.jbiomech.2011.04.014
378.
Adeeb
,
S. M.
,
Sayed Ahmed
,
E. Y.
,
Matyas
,
J.
,
Hart
,
D. A.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
2004
, “
Congruency Effects on Load Bearing in Diarthrodial Joints
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
3
), pp.
147
157
.10.1080/10255840410001710885
379.
Wei
,
H. W.
,
Sun
,
S. S.
,
Jao
,
S. H.
,
Yeh
,
C. R.
, and
Cheng
,
C. K.
,
2005
, “
The Influence of Mechanical Properties of Subchondral Plate, Femoral Head and Neck on Dynamic Stress Distribution of the Articular Cartilage
,”
Med. Eng. Phys.
,
27
(
4
), pp.
295
304
.10.1016/j.medengphy.2004.12.008
380.
Gu
,
K. B.
, and
Li
,
L. P.
,
2011
, “
A Human Knee Joint Model Considering Fluid Pressure and Fiber Orientation in Cartilages and Menisci
,”
Med. Eng. Phys.
,
33
(
4
), pp.
497
503
.10.1016/j.medengphy.2010.12.001
381.
Shirazi
,
R.
,
Shirazi-Adl
,
A.
, and
Hurtig
,
M.
,
2008
, “
Role of Cartilage Collagen Fibrils Networks in Knee Joint Biomechanics Under Compression
,”
J. Biomech.
,
41
(
16
), pp.
3340
3348
.10.1016/j.jbiomech.2008.09.033
382.
Wilson
,
W.
,
van Rietbergen
,
B.
,
van Donkelaar
,
C. C.
, and
Huiskes
,
R.
,
2003
, “
Pathways of Load-Induced Cartilage Damage Causing Cartilage Degeneration in the Knee After Meniscectomy
,”
J. Biomech.
,
36
(
6
), pp.
845
851
.10.1016/S0021-9290(03)00004-6
383.
Besier
,
T. F.
,
Gold
,
G. E.
,
Beaupre
,
G. S.
, and
Delp
,
S. L.
,
2005
, “
A Modeling Framework to Estimate Patellofemoral Joint Cartilage Stress In Vivo
,”
Med. Sci. Sports Exercise
,
37
(
11
), pp.
1924
1930
.10.1249/01.mss.0000176686.18683.64
384.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Hasler
,
E. M.
,
2002
, “
Inadequate Placement of Osteochondral Plugs May Induce Abnormal Stress-Strain Distributions in Articular Cartilage –Finite Element Simulations
,”
Med. Eng. Phys.
,
24
(
2
), pp.
85
97
.10.1016/S1350-4533(01)00122-9
385.
Kelly
,
D. J.
, and
Prendergast
,
P. J.
,
2005
, “
Mechano-regulation of Stem Cell Differentiation and Tissue Regeneration in Osteochondral Defects
,”
J. Biomech.
,
38
(
7
), pp.
1413
1422
.10.1016/j.jbiomech.2004.06.026
386.
Owen
,
J. R.
, and
Wayne
,
J. S.
,
2011
, “
Contact Models of Repaired Articular Surfaces: Influence of Loading Conditions and the Superficial Tangential Zone
,”
Biomech. Model. Mechanobiol.
,
10
(
4
), pp.
461
471
.10.1007/s10237-010-0247-1
387.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
,
Laz
,
P. J.
,
FitzPatrick
,
D. P.
,
Lerner
,
A. L.
, and
Rullkoetter
,
P. J.
,
2011
, “
Development of a Statistical Shape Model of the Patellofemoral Joint for Investigating Relationships Between Shape and Function
,”
J. Biomech.
,
44
(
13
), pp.
2446
2452
.10.1016/j.jbiomech.2011.06.025
388.
Andriacchi
,
T. P.
,
Briant
,
P. L.
,
Bevill
,
S. L.
, and
Koo
,
S.
,
2006
, “
Rotational Changes at the Knee After ACL Injury Cause Cartilage Thinning
,”
Clin. Orthop. Relat. Res.
,
442
, pp.
39
44
.10.1097/01.blo.0000197079.26600.09
You do not currently have access to this content.